

Early Enteral Nutrition in critical illness: Why?

Arthur R.H. van Zanten, MD PhD

Internist-intensivist

Gelderse Vallei Hospital

Ede, The Netherlands

E-mail: <u>zantena@zgv.nl</u>

www.criticalcarenutrition.nl

What is Early Enteral Nutrition?

Why Early Enteral Nutrition?

- To maintain intestinal mucosal integrity
- Provide nutrients required during metabolic • stress
- **Reduce morbidity compared with parenteral** nutrition
- **Reduce cost compared with parenteral** • nutrition

Enteral nutrition initiated within 24-48 hours following hospitalization, trauma, or injury

Zaloga GP. Crit Care Med 1999;27:259 Alverdy Crit Care Med 2003;31:598

Why would you like to start early with Early Enteral Nutrition?

Calories received in high and low risk patients based on NUTRIC scores and 28-day mortality

Table 1: NUTRIC Score variables

Variable	Range	Points
Age	<50	0
	50 - <75	1
	≥75	2
APACHE II	<15	0
	15 - <20	1
	20-28	2
	≥28	3
SOFA	<6	0
Variable (e PACHE II OFA Umber of Co-morbidities ays from hospital to ICU admission 6	6 - <10	1
	≥10	2
Number of Co-morbidities	0-1	0
	≥2	1
Days from hospital to ICU admission	0 - <1	0
	≥1	1
L-6	0 - <400	0
	≥ 400	1

Table 2: NUTRIC Score scoring system: if IL-6 available

Sum of points	Category	
6-10	High Score	 Associated with wo These patients are nutrition therapy.
0-5	Low Score	These patients hav

Table 3. NUTRIC Score scoring system: If no IL-6 available*

Sum of points	Category	
5-9	High Score	 Associated with wo These patients are nutrition therapy.
0-4	Low Score	These patients hav

Explanation

orse clinical outcomes (mortality, ventilation). the most likely to benefit from aggressive

ve a low malnutrition risk.

Explanation

orse clinical outcomes (mortality, ventilation). the most likely to benefit from aggressive

ve a low malnutrition risk.

Percent of Caloric Prescription Received Nutrition Risk Score 0-5 --+ 6-9

Rahman A et al. Clin Nutr. 2016 Feb;35(1):158-62.

More Protein and Energy Associated With Improved Mortality in Higher Risk Patients

Sample in ICU ≥ 4 d							
	Protein Intake (pe	r 10% of Goal)	ioal) Energy Intake (per 10% of Goa				
Outcome	Low NUTRIC Score $(n = 1,217)$	High NUTRIC Score (<i>n</i> = 1,636)	Low NUTRIC Score (n = 1,217)	High NUTRIC Score (n = 1,636)			
Mortality ^{a,b}	0.952 (0.895-1.011)	0.930 (0.892–0.969)⁰	0.962 (0.904–1.023)	0.927 (0.893–0.962)°			
Adjusted ^d	0.998 (0.936-1.064)	0.934 (0.894–0.975)°	1.011 (0.946-1.079)	0.929 (0.893–0.966)°			
TDA ^{f,g}	0.970 (0.936–1.006)	1.004 (0.967-1.043)	0.956 (0.921–0.992)°	0.995 (0.959−1.032)°			
Adjusted⁴	1.013 (0.975-1.052)	1.051 (1.012-1.091)°	0.998 (0.958-1.039)	1.045 (1.007−1.085)°			
Sample in ICU ≥ 12 d							
	Protein Intake (pe	r 10% of Goal)	Energy Intake (p	per 10% of Goal)⁵			
Outcome	Low NUTRIC Score (n = 711)	High NUTRIC Score (n = 891)	Low NUTRIC Score (n = 711)	High NUTRIC Score (n = 891)			
Mortality ^{a,b}	1.059 (0.964–1.165)	0.913 (0.853–0.977)	1.069 (0.975–1.173)	0.909 (0.854–0.967) ⁰			
Adjusted ^d	1.052 (0.954-1.156)	0.899 (0.84-0.963) ^e	1.067 (0.967-1.178)	0.884 (0.829−0.941) ^c			
TDA ^{f,g}	0.963 (0.913–1.016)	1.062 (1.002-1.126) ^e	0.937 (0.888–0.989) ^e	1.048 (0.990-1.109)			
Adjusted ^d	0.999 (0.946-1.056)	1.092 (1.032-1.155) ^e	0.981 (0.925–1.040)	1.091 (1 .032−1.155)			

Sample in ICU ≥ 4 d								
	Protein Intake (pe	n Intake (per 10% of Goal) Energy Intake (per 10% of Go			per 10% of Goal)			
Outcome	Low NUTRIC Score (n = 1,217)	High NUTRIC Score (<i>n</i> = 1,636)		Low NUTRIC Score (n = 1,217)	High NUTRIC Score (n = 1,636)			
Mortality ^{a,b}	0.952 (0.895-1.011)	0.930 (0.892−0.969)⁰	(0.962 (0.904–1.023)	0.927 (0.893−0.962)°			
Adjusted⁴	0.998 (0.936-1.064)	0.934 (0.894–0.975)°		1.011 (0.946–1.079)	0.929 (0.893–0.966)°			
TDA ^{f,g}	0.970 (0.936–1.006)	1.004 (0.967–1.043)	1	0.956 (0.921–0.992)⁰	0.995 (0.959−1.032)°			
Adjusted⁴	1.013 (0.975-1.052)	1.051 (1.012-1.091)°	(0.998 (0.958–1.039)	1.045 (1.007-1.085)°			
Sample in ICU \ge 12 d								
	Protein Intake (per	r 10% of Goal) ^ь		Energy Intake (p	er 10% of Goal)⁵			
Outcome	Low NUTRIC Score (n = 711)	High NUTRIC Score (n = 891)		Low NUTRIC Score (n = 711)	High NUTRIC Score (n = 891)			
Mortality ^{a,b}	1.059 (0.964–1.165)	0.913 (0.853–0.977) ^e		1.069 (0.975–1.173)	0.909 (0.854–0.967) ^e			
Adjusted ^d	1.052 (0.954-1.156)	0.899 (0.84–0.963) ^e		1.067 (0.967–1.178)	0.884 (0.829-0.941)°			
TDA ^{f,g}	0.963 (0.913-1.016)	1.062 (1.002-1.126) ^e		0.937 (0.888–0.989) ^e	1.048 (0.990-1.109)			
Adjusted ^d	0.999 (0.946-1.056)	1.092 (1.032-1.155) ^e		0.981 (0.925–1.040)	1.091 (1.032-1.155)∘			

Compher C et al. Crit Care Med 2017; 45:156–163

Factors in regulation of splanchnic circulation

Norepinephrine, neurotensin, neuropeptide Y, ATP

VASOCONSTRICTION

Endothelin

Vasopressin

Enteral nutrition and splanchnic ischemia

Enteral Nutrition

Small intestinal glucose absorption in critical illness versus health

- ICU patients n = 28 Healthy subjects n = 16
- Median (IQR)

P<0.05

Deane, et al. Crit. Care Med 2011

Delayed EN impairs intestinal carbohydrate absorption in ICU patients

impact of delayed EN on small intestinal absorption of 3-O-methyl-glucose: Gastric emptying (scintigraphy)

	Enteral nutrition < 24 hours N= 14	Enteral nutrition > 4 days N=14	P-value
3-O-methyl-glucose day 4			
Peak	0.37 ± 0.04	0.24 ± 0.04	P < 0.02
AUC 240 min	63.4 ± 8.3	38.5 ± 7.0	P < 0.04
Mechanical ventilation			
Days	9.2 ± 0.9	13.7 ± 1.9	P < 0.05
ICU length of stay			
Days	11.3 ± 0.8	15.9 ± 1.9	P < 0.05

Delaying enteral feeding is associated with a reduction in small intestinal glucose absorption These observations support recommendations for "early" enteral nutrition in critically ill patients

Is Early Enteral Nutrition safe when the ICU patient is on vasopressors?

Safe on vasopressors?

Patients at least 1 vasopressor significant better survival when feeding is commenced early

Is Early Enteral Nutrition safe in with early shock?

Enteral vs Parenteral nutrition in ventilated shock patients: NUTRIREA-2

	Enteral group (n=1202)	Parenteral group (n=1208)	Absolute difference estimate (95% Cl)	Hazard ratio (95% CI)	p value
Primary outcome					
Day 28 mortality	443/1202 (37%)	422/1208 (35%)	2·0 (-1·9 to 5·8)		0.33
Secondary outcomes					
Day 90 mortality	530/1185 (45%)	507/1192 (43%)	2·2 (-1·8 to 6·2)		0.28
ICU mortality*	429 (33%)	405 (31%)		1·10 (0·96 to 1·26)	0.17
Hospital mortality*	498 (36%)	479 (34%)		1.08 (0.95 to 1.22)	0.25
ICU length of stay (days)	9·0 (5·0 to 16·0)	10·0 (5·0 to 17·0)			0. 08
Acute-care hospital length of stay (days)	17·0 (8·0 to 32·0)	18·0 (9·0 to 33·0)			0.11
Days without vasopressor support*	20·0 (0·0 to 25·0)	21·0 (0·0 to 26·0)			0.10
Days without dialysis*	27·0 (0·0 to 28·0)	27·0 (0·0 to 28·0)			0.52
Days without mechanical ventilation*	11.0 (0.0 to 23.0)	12·0 (0·0 to 23·0)			0.54
Infections					
ICU-acquired infection*	173 (14%)	194 (16%)		0.89 (0.72 to 1.09)	0.25
Ventilator-associated pneumonia*	113 (9%)	118 (10%)		0·96 (0·74 to 1·24)	0.75
Bacteraemia*	38 (3%)	55 (5%)		0·69 (0·46 to 1·04)	0-08
CVC-related infection*	29 (2%)	27 (2%)		1·07 (0·64 to 1·81)	0.79
Urinary tract infection*	18 (2%)	16 (1%)		1·13 (0·58 to 2·21)	0.73
Soft-tissue infection					
Patients (n)	1/1202	6/1208			
Other infection*	11 (1%)	21 (2%)		0·52 (0·25 to 1·09)	0.08
Gastrointestinal complications					
Vomiting*	406 (34%)	246 (24%)		1.89 (1.62 to 2.20)	<0.0001
Diarrhoea*	432 (36%)	393 (33%)		1·20 (1·05 to 1·37)	0.009
Bowel ischaemia*	19 (2%)	5 (<1%)		3·84 (1·43 to 10·3)	0.007
Acute colonic pseudo-obstruction*	11 (1%)	3 (<1%)		3·7 (1·03 to 13·2)	0.04

In critically ill adults with shock, early isocaloric enteral nutrition did not reduce mortality or the risk of secondary infections but was associated with a greater risk of digestive complications compared with early isocaloric parenteral nutrition.

Gastrointestinal complications of EN in early shock: NUTRIREA-2

Gastrointestinal complications				
Vomiting*	406 (34%)	246 (24%)	 1.89 (1.62 to 2.20)	<0
Diarrhoea*	432 (36%)	393 (33%)	 1·20 (1·05 to 1·37)	C
Bowel ischaemia*	19 (2%)	5 (<1%)	 3·84 (1·43 to 10·3)	C
Acute colonic pseudo-obstruction*	11 (1%)	3 (<1%)	 3·7 (1·03 to 13·2)	C

Reignier J et al. Lancet Published online November 8, 2017

Comment on Nutrirea II study

- Patients in severe shock
- High vasopressor dosages
- hours
- **ESICM** guidelines 2018: •

Early aggressive build-up of enteral feeding to target within 24-28

Recommendation 2. We suggest delaying EN if shock is uncontrolled and haemodynamic and tissue perfusion goals are not reached, but start low dose EN as soon as shock is controlled with fluids and vasopressors/ inotropes (Grade 2D).

Is Early Enteral Nutrition safe in patients with intra-abdominal hypertension?

Splanchnic Circulation in abdominal hypertension

IAH/IAC and EEN

Author Year	Population No of pt studied	Study design	Feeding details	Groups in comparison	Main outcomes
Cothren 2004 ¹⁰⁰	Abdominal compartment syndrome after trauma N=37	Retrospective case series	12 pt were not fed, 25 were fed, but EN was started 5.1±1.9 d after injury	None	MOF rate 24% (9 of 37 patients), mortality 38% (14 of 37 patients). EN in 25 of 37 patients: in 13 ≤24 h after abd. closure, 7 patients delayed, 5 patients were fed despite open abdomen. In the 13 of ≤24 h fed patients, EN was started on postinjury day 5.1±1.9.
Reintam 2008 ¹¹²	ICU patients on mechanical ventilation and with LOS>24h N=264	Prospective case series	No protocol	None	ACS developed in 1.8%
Reintam 2008 ¹¹³	General ICU patients on mechanical ventilation at risk for IAH N=257	Prospective case series	No protocol	None	IAH developed in 37%, only 14% of them received EN
Sun 2013 ¹¹⁴	Severe acute pancreatitis N=60	Prospective cohort	Early EN within 48h; delayed EN from day 8 on	Early vs delayed EN IAP<15 mmHg vs IAP ≥15 mmHg	IAH incidence from the 9 th day after admission: EEN 8/30 versus delayed EN 18/30; P = 0.009. FI incidence during the initial 3 days of feeding: day 1: EEN 25/30 versus DEN 12/30; P = 0.001; day 2: EEN 22/30 versus DEN 9/30; P = 0.001; day 3: EEN 15/30 versus DEN 4/30; P = 0.002. Patients with an IAP <15 mmHg had lower FI incidence than those with

Reintam A, Van Zanten AR et al. Intensive Care Med. 2017 Mar;43(3):380-398

IAH/IAC and EEN

Author Year	Population No of pt studied	Study design	Feeding details	Groups in comparison	Main outcomes
Cothren 2004 ¹⁰⁰	Abdominal compartment syndrome after trauma N=37	Retrospective case series	12 pt were not fed, 25 were fed, but EN was started 5.1±1.9 d after injury	None	MOF rate 24% (9 of 37 patients), mortality 38% (14 of 37 patients). EN in 25 of 37 patients: in 13 ≤24 h after abd. closure, 7 patients delayed, 5 patients were fed despite open abdomen. In the 13 of ≤24 h fed patients, EN was started on postinjury day 5.1±1.9.

All studies reported high incidence of feeding intolerance associated with intra-abdominal hypertension, but data are not conclusive regarding causality. A recently published study demonstrated that EEN did not increase intra-abdominal pressure, but values exceeding 15 mmHg were associated with higher rates of feeding intolerance in patients with severe acute pancreatitis

	N=257				
Sun 2013 ¹¹⁴	Severe acute pancreatitis N=60	Prospective cohort	Early EN within 48h; delayed EN from day 8 on	Early vs delayed EN IAP<15 mmHg vs IAP ≥15 mmHg	IAH incidence from the 9 th day after admission: EEN 8/30 versus delayed EN 18/30; P = 0.009. FI incidence during the initial 3 days of feeding: day 1: EEN 25/30 versus DEN 12/30; P = 0.001; day 2: EEN 22/30 versus DEN 9/30; P = 0.001; day 3: EEN 15/30 versus DEN 4/30; P = 0.002. Patients with an IAP <15 mmHg had lower FI incidence than those with

Reintam A, Van Zanten AR et al. Intensive Care Med. 2017 Mar;43(3):380-398

EEN prevents IAH and reduces severity of SAP compared with delayed EN

Severe Acute Pancreatitis

Early enteral nutrition did not increase IAP. In contrast, it might prevent the development of IAH.

EEN group (n=30): 8 h DEN (n=30): day 8 **Observation 2 weeks**

Sun J, et al. World Journal of Surgery. 2013, 37: 2053–2060.

Early Enteral Nutrition in IAH and ACS

Can we predict splanchnic ischemia to safely start EEN?

Intern Emerg Med (2017) 12:821-836 DOI 10.1007/s11739-017-1668-y

EM - REVIEW

Diagnostic accuracy of novel serological biomarkers to detect acute mesenteric ischemia: a systematic review and meta-analysis

Nikki Treskes¹ · Alexandra M. Persoon² · Arthur R. H. van Zanten¹

Treskes N, Persoon AM, Van Zanten AR. Intern Emerg Med (2017) 12:821–836

I-FABP, D-lactate, a-Glutathione S-transferase (a-GST), and Ischemia-modified albumin (IMA)

Biomarkers for splanchnic ischemia

Treskes N, Persoon AM, Van Zanten AR. Intern Emerg Med (2017) 12:821–836

Biomarkers for splanchnic ischemia

	No. of studies	Sensitivity	$I^{2}(\%)$	p value	Specificity	$I^{2}(\%)$	p value	Positive LR ^a	I ² (%)	p value	Negative LR	I^{2} (%)
I-FABP (Uden kit)	4	0.790 (0.665–0.885)	16	0.312	0.913 (0.870-0.946)	82	0.001	6.368 (2.100–18.534)	79	0.003	0.262 (0.130-0.543)	41
I-FABP (Osaka kit)	6	0.750 (0.679–0.812)	0	0.463	0.792 (0.762–0.820)	87	0.000	4.577 (2.910–7.197)	75	0.001	0.321 (0.249–0.413)	0
D-lactate	3	0.717 (0.586-0.825)	20	0.288	0.742 (0.690-0.790)	98	0.000	3.621 (0.770-17.035)	97	0.000	0.371 (0.249-0.552)	0
α-GST	3	0.678 (0.542-0.795)	88	0.000	0.842 (0.753-0.909)	0	0.792	3.27 (1.50-7.16)	27	0.252	0.40 (0.11-1.49)	90
IMA	2	0.947 (0.740-0.999)	0	0.739	0.864 (0.651–0.971)	0	0.906	6.931 (2.37–24.24)	0	0.935	0.064 (0.02–0.48)	0

Numbers between brackets represent 95% confidence intervals

 I^2 inconsistency (*I*-square)

Likelihood ratio

- Citrulline promising marker with high reported specificity (1 study).
- Best pooled performance IMA and I-FABP (Uden kit). Heterogeneous and small patient populations studied. Positive and negative predictive values do not demonstrate optimal performance. Too early to consider them to replace other diagnostic modalities such as CT angiography.

Treskes N, Persoon AM, Van Zanten AR. Intern Emerg Med (2017) 12:821–836

What to do? What do the guidelines tell us?

Recent guidelines Open Access

Intensive Care Med (2017) 43:380-398 DOI 10.1007/s00134-016-4665-0

ERENCE REPORTS AND EXPERT PANEL

Early enteral nutrition in critically ill patients: ESICM clinical practice guidelines

Annika Reintam Blaser^{1,2*}, Joel Starkopf^{1,3}, Waleed Alhazzani^{4,5}, Mette M. Berger⁶, Michael P. Casaer⁷, Adam M. Deane⁸, Sonja Fruhwald⁹, Michael Hiesmayr¹⁰, Carole Ichai¹¹, Stephan M. Jakob¹², Cecilia I. Loudet¹³, Manu L. N. G. Malbrain¹⁴, Juan C. Montejo González¹⁵, Catherine Paugam-Burtz¹⁶, Martijn Poeze¹⁷, Jean-Charles Preiser¹⁸, Pierre Singer^{19,20}, Arthur R.H. van Zanten²¹, Jan De Waele²², Julia Wendon²³, Jan Wernerman²⁴, Tony Whitehouse²⁵, Alexander Wilmer²⁶, Heleen M. Oudemans-van Straaten²⁷ and ESICM Working Group on Gastrointestinal Function

© 2017 The Author(s). This article is published with open access at Springerlink.com

EEN ESICM Practice Guidelines 2017

a Mortality

	EEN	1	EPN	1	
Study or Subgroup	Events	Total	Events	Total	Weight
Kompan 1999	0	14	1	14	0.5%
Kompan 2004	0	27	1	25	0.5%
Lam 2007	б	41	15	41	6.5%
Justo Meirelles 2011	1	12	1	10	0.7%
Altintas 2011	13	30	20	41	15.5%
Sun 2013	2	30	1	30	0.9%
Harvey 2014	450	1186	431	1185	75.4%
Total (95% CI)		1340		1346	100.0%
Total events	472		470		
Heterogeneity. Tau ² =	0.01; Ch	i ^z = 6.6	50, df =	б (Р = Ф	0.36); I ^z -

Test for overall effect: Z = 0.46 (P = 0.64)

b Infections

	EEN		EPN		
Study or Subgroup	Events	Total	Events	Total	Weight
Moore 1989	1	29	б	30	4.1%
Kompan 2004	9	27	16	25	18.5%
Lam 2007	10	41	25	41	18.8%
Altintas 2011	7	30	13	41	15.1%
Justo Meirelles 2011	2	12	4	10	7.0%
Sun 2013	3	30	10	30	9.5%
Harvey 2014	251	1195	261	1188	26.9%
Total (95% CI)		1364		1365	100.0%
Total events	283		335		
Heterogeneity. Tau ² =	0.19; Ch	$i^2 = 17$.26, df =	6 (P =	0.008);
Test for overall effect:	Z = 2.60	(P = 0)	009)		

EEN ESICM Practice Guidelines 2017

a Mortality

	EEN	1	DEN	1	
Study or Subgroup	Events	Total	Events	Total	Weight
Moore 1986	1	32	2	31	2.6%
Chiarelli 1990	0	10	0	10	
Eyer 1993	2	19	2	19	4.29
Chuntrasakul 1996	1	21	3	17	3.19
Singh 1998	4	21	4	22	9.39
Minard 2000	1	12	4	15	3.4%
Pupelis 2001	1	30	7	30	3.5%
Malhotra 2004	12	100	16	100	30.19
Peck 2004	4	14	5	13	12.59
Nguyen 2008	6	14	6	14	19.9%
Moses 2009	3	29	3	30	6.39
Chourdakis 2012	3	34	2	25	5.09
Total (95% CI)		336		326	100.09
Total events	38		54		
Heterogeneity: Tau ² =	0.00; Cł	$1i^2 = 5.$	61, df =	10 (P =	0.85);
Test for overall effect:	Z = 1.44	$4 (\mathbf{P} = 0)$).15)		

b Infections

	EEN	1	DEN	1	
Study or Subgroup	Events	Total	Events	Total	Weigh
Moore 1986	3	32	9	31	6.49
Chiarelli 1990	3	10	7	10	8.35
Eyer 1993	8	19	4	19	8.45
Hasse 1995	3	14	8	17	7.25
Watters 1997	1	13	4	15	2.59
Singh 1998	3	21	8	22	6.65
Minard 2000	6	12	7	15	12.49
Pupelis 2001	1	30	8	30	2.6%
Malhotra 2004	21	100	30	100	21.39
Nguyen 2008	3	14	6	14	6.7
Chourdakis 2012	13	34	12	25	17.59
Total (95% CI)		299		298	100.0%
Total events Heterogeneity: Tau ² = Test for overall effect:	65 0.08; Ch Z = 2.58	ni² = 13 8 (P = 0	103 3.41, df = 9.010)	= 10 (P	= 0.20)

Reintam A, Van Zanten AR et al. Intensive Care Med. 2017 Mar;43(3):380-398

Recommendations (24)

- 17 recommendations favouring initiation of EEN.
- 7 recommendations favouring delaying EN.
- EEN reduced infectious complications in unselected critically ill patients, in patients with severe acute pancreatitis, and after GI surgery.
- We did not detect any evidence of superiority for early PN or delayed EN over EEN.
- All recommendations are weak because of the low quality of evidence, with several based only on expert opinion.

Early Enteral Nutrition is safe and recommended:

- In controlled shock
- When using NMBA
- Targeted Temperature Management
- ECMO •
- **Prone position** \bullet
- TBI, stroke, spinal cord injury
- Severe acute Pancreatitis
- **GI** surgery

This content may not be amended, modified or commercially exploited without prior written consent

- Abdominal aortic surgery
- Abdominal trauma
- **Open abdomen**
- Intra-abdominal Hypertension without compartment syndrome
- Liver failure (independent of grade of encephalopathy)
- Absent bowel sounds
- Diarrhea

Reintam A, Van Zanten AR, et al. Intensive Care Med. 2017, 43: 380–398.

When to delay enteral nutrition?

- In bowel obstruction (not **post-operative ileus**)
- In uncontrolled shock •
- Overt bowel ischemia
- **High-output fistula that** • cannot be bypassed

- In abdominal compartment syndrome, when during IAH and EEN abdominal pressure increases
- Active GI-bleeding
- **GRV>500 mL/6h**

Reintam A, Van Zanten AR, et al. Intensive Care Med. 2017, 43: 380–398.

Always resuscitate patient before starting EEN

- Fluid therapy
- Vasopressor start
- Stable MAP (>65 mmHg)
- Acceptable ScVO₂ (65-70%)
- Acceptable lactate < 2.5 mmol/l or 50% drop
- Most patients are stable within 6-12 hours
- Then start EEN (<24h)

We did not encounter 1 single case of non-occlusive mesenteric ischemia due to EN in >1000 ICU patients using this checklist

ESPEN ICU guidelines 2018

• Recommendation 38: EN should be delayed:

- If shock is uncontrolled and hemodynamic and tissue perfusion goals are not reached, whereas low dose EN can be started as soon as shock is controlled with fluids and vasopressors/inotropes, while remaining vigilant for signs of bowel ischemia;

- In case of uncontrolled life-threatening hypoxemia, hypercapnia or acidosis, whereas EN can be started in patients with stable hypoxemia, and compensated or permissive hypercapnia and acidosis;

- stopped and no signs of re-bleeding are observed;
- In patients with overt bowel ischemia;
- In patients with abdominal compartment syndrome; and
- If gastric aspirate volume is above 500 ml/6h.

Grade of recommendation: B – strong consensus (100 % agreement)

- In patients suffering from active upper GI bleeding, whereas EN can be started when the bleeding has

- In patients with high-output intestinal fistula if reliable feeding access distal to the fistula is not achievable;

ESPEN ICU guidelines 2018

Recommendation 39: Low dose EN should be administered

dose after rewarming;

- In patients with intra-abdominal hypertension without abdominal compartment syndrome, whereas temporary reduction or discontinuation of EN should be considered when intra-abdominal pressure values further increase under EN; and

- In patients with acute liver failure when acute, immediately lifethreatening metabolic derangements are controlled with or without liver support strategies, independent on grade of encephalopathy. Grade of recommendation: B – strong consensus (95.65 % agreement)

- In patients receiving therapeutic hypothermia and increasing the

- Early EN > Delayed EN > Delayed PN > Early PN •
- First resuscitate the gut •
- **Biomarker: No, clinical judgement or CT-angio** ٠
- EEN in abdominal hypertension yes, in abdominal compartment syndrome no •
- 7 reasons to delay EN: uncontrolled shock •
 - Most patients HD stabile after 6-12 hours

Median in Ede 5.6 hours

ullet

•

Definition

- **Early Enteral Nutrition (EEN):** •
- ulletinjury

Enteral nutrition is initiated within 24 – 48 hours following hospitalization, trauma, or

For ICU patients after admission to ICU

Zaloga GP. Crit Care Med 1999;27:259 Alverdy Crit Care Med 2003;31:598

•

- To maintain intestinal mucosal integrity
- Normal microvilli •
- Height and number ٠
- **Normal intestinal barrier** ٠
- Intestinal mucosal immunity ٠
- **Provide nutrients required during metabolic stress** •
- **Reduce morbidity compared with parenteral nutrition** •
- **Reduce cost compared with parenteral nutrition**

Enteral Nutrition

Usual Postoperative Organ Recovery Times

Small Intestine 12–24 hr

Do Not Wait for Bowel Sounds

Luckey A, et al. Arch Surg. 2003;138:206-214. Livingston EH, Passaro EP Jr. Dig Dis Sci. 1990;35:121-132. Delaney CP, et al. Clinical Consensus Update in General Surgery. 2006.

Study	Early	Traditional
pre 2000		
Sagar	3 of 15	5 of 15
Ryan	2 of 7	7 of 7
Schroeder	4 of 16	7 of 16
Binderow	0 of 32	0 of 32
Beier-Holgersen	8 of 30	19 of 30
Carr	0 of 14	4 of 14
Ortiz	17 of 93	18 of 95
Hartsell	1 of 29	1 of 29
Nessim	3 of 27	4 of 27
Stewart	10 of 40	12 of 40
subtotal	48 of 303	77 of 305
post 2000		
Han-Geurts	12 of 56	13 of 49
Delaney	7 of 31	10 of 33
Lucha	1 of 26	1 of 25
Zhou	23 of 161	70 of 155
Han-Geurts	22 of 46	20 of 50
subtotal	65 of 320	114 of 312
POOLED	113 of 623	191 of 617

Osland et al. JPEN 2011

RCT EEN in patients undergoing major upper gastrointestinal resection

Barlow R, et al. ClinNutr, 2011; 30:560-566.

RCT EEN in patients undergoing major upper gastrointestinal resection

Complication

Infective Complications

Wound infection

Chest infection

Anastomotic leakage

UTI

Bacteraemia

Non-infective complications

Pleural effusion

Delayed gastric emptying

Myocardial infarction

Major haemorrhage

Chylothorax

Rec. Laryngeal nerve palsy

Conventional	Early EN	P-value
16 (28.1)	7 (10.9)	0.017
12 (21.1)	5 (7.8)	0.036
7 (12.2)	2 (3.1)	0.055
3 (5.3)	I (I.6)	
3 (5.3)	2 (3.1)	
10 (17.5)	10 (15.6)	
4 (7.0)	0	0.031
I (I.8)	0	
2 (3.5)	0	
0	I (I.6)	
0	I (I.6)	

Barlow R, et al. ClinNutr,2011;30:560-566.

EN better effect than TPN on gut barrier function in severe acute pancreatitis

	Enteral nutrition N= 29	Parenteral nutrition N=34	P-value
Endotoxin (EU/I)			
Day 07	39.30 ± 15.82	73.05 ± 21.16	P < 0.05
Day 14	22.64 ± 14.31	49.34 ± 24.54	P < 0.05
Day 21	14.81 ± 10.93	30.08 ± 14.10	P < 0.05
Lactulose: mannitol ratio (urine)			
Day 07	0.28 ± 0.25	0.65 ± 0.45	P < 0.05
Day 14	0.21 ± 0.18	0.54 ± 0.41	P < 0.05
Day 21	0.08 ± 0.04	0.29 ± 0.06	P < 0.05

EN Less endotoxinemia and better gut integrity

Delayed enteral feeding impairs intestinal carbohydrate absorption in critically ill patients

imp	impact of delayed enteral nutrition on small intestinal absorption of 3-O-methyl-glucose: Gastric emptying (scintigraphy) similar						
		Enteral nutrition < 24 hours N= 14	Enteral nutrition > 4 days N=14	P-value			
3-O-methyl- 4	glucose day						
	Peak	0.37 ± 0.04	0.24 ± 0.04	P < 0.02			
A	UC 240 min	63.4 ± 8.3	38.5 ± 7.0	P < 0.04			
Mechanical	ventilation						
	Days	9.2 ± 0.9	13.7 ± 1.9	P < 0.05			
ICU length o	of stay						
	Days	11.3 ± 0.8	15.9 ± 1.9	P < 0.05			
Dela	Delaying enteral feeding is associated with a reduction in small intestinal glucose absorption						

These observations support recommendations for "early" enteral nutrition in critically ill patients

Nguyen N. Crit Care Med. 2012;40(1):50-4

EN Less infections compared to PN

	EN		PN		
Study or Subgroup	Events	Total	Events	Total	W
1.1.1 Infections (PN>E	EN kcal)				
Young	5	28	4	23	
Peterson	2	21	8	25	
Moore	5	29	11	30	
Kudsk	9	51	18	45	1
Woodcock	6	16	11	21	1
Chen	5	49	18	49	1
Subtotal (95% CI)		194		193	(
Total events	32		70		
Heterogeneity: Tau ² =	0.00; Chi ²	= 4.60,	df = 5 (P	P = 0.47); I
Test for overall effect:	Z = 3.81 (P = 0.00	001)		
1.1.2 Infections (PN~E	EN kcal)				
Adams	15	23	17	23	2
Kalfarentzos	5	18	10	20	1
Casas	1	11	3	11	
Subtotal (95% CI)		52		54	4
Total events	21		30		
Heterogeneity: Tau ² =	0.00; Chi ²	= 1.92,	df = 2 (P	² = 0.38); I
Test for overall effect:	Z = 1.28 (P = 0.20	D)		
Total (95% CI)		246		247	1(
Total events	53		100		
Heterogeneity: Tau ² =	0.07; Chi ²	= 11.24	4, df = 8 (P = 0.1	9);
Test for overall effect:	Z = 3.24 (P = 0.00	01)		
Test for subgroup diffe	rences: C	hi² = 3.	59, df = 1	(P = 0.	06

EEN trend to lower mortality

	Early	EN	Delayed/	None	
Study or Subgroup	Events	Total	Events	Total	Weigh
1.1.1 EN vs IV Fluids/No	EN				
Moore	1	32	2	31	2.5%
Chuntrasakul	1	21	3	17	2.9%
Singh	4	21	4	22	8.7%
Pupelis 2000	1	11	5	18	3.4%
Pupelis 2001	1	30	7	30	3.3%
Malhotra	12	100	16	100	28.2%
Subtotal (95% CI)		215		218	49.07
Total events	20		37		
Heterogeneity: Tau ² = 0	.00; Chi ²	= 4.10,	, df = 5 (P :	= 0.54);	l ² = 0%
Test for overall effect: Z	= 1.78 (P = 0.00	8)		
1.1.2 EN vs Delayed EN					
Chiarelli	0	10	0	10	
Ever	2	19	2	19	4.0%
Kompan 1999	0	14	1	14	1.4%
Minard	1	12	4	15	3.2%
Kompan 2004	0	27	1	25	1.4%
Dvorak	0	7	0	10	
Peck	4	14	5	13	11.8%
Nguyen 2008	6	14	6	14	18.7%
Moses	3	29	3	30	5.9%
Chourdakis	3	34	2	25	4.7%
Subtotal (95% CI)		180		175	51.09
Total events	19		24		
Heterogeneity: Tau ² = 0	.00; Chi ²	= 2.07	df = 7 (P :	= 0.96);	² = 0%

Test for overall effect: Z = 0.72 (P = 0.47)

Total (95% CI) 395 393 100.0% Total events 39 61 Heterogeneity: Tau² = 0.00; Chi² = 6.83, df = 13 (P = 0.91); I² = 0% Test for overall effect: Z = 1.76 (P = 0.08) Test for subgroup differences: Chi² = 0.58, df = 1 (P = 0.44), I² = 0%

EEN less infections

	Early	EN	Delayed/	None	
Study or Subgroup	Events	Total	Events	Total	Weig
1.2.1 EN vs IV Fluids/No	DEN				
Moore	3	32	9	31	2.0
Singh	7	21	12	22	5.9
Malhotra	54	100	67	100	33.8
Subtotal (95% CI)		153		153	41.3
Total events	64		88		
Heterogeneity: Tau ² = 0	.04; Chi ²	= 2.72,	df = 2 (P	= 0.26);	l ² = 26
Test for overall effect: Z	: = 1.85 (P = 0.0	6)		
1.2.2 EN vs Delayed EN	1				
Minard	6	12	7	15	4.0
Kompan 2004	9	27	16	25	7.4
Peck	12	14	11	13	22.0
Nguyen 2008	3	14	6	14	2.1
Moses	17	29	19	30	14.7
Chourdakis	13	34	12	25	7.8
Subtotal (95% CI)		130		122	58.
Total events	60		71		
Heterogeneity: Tau ² = 0	.01; Chi ²	= 5.71	df = 5 (P	= 0.34);	l² = 12
Test for overall effect: Z	= 1.27 (P = 0.2	0)		
			-		
Total (95% CI)		283		275	100.
Total events	124		159		

Total events	124	159	
Heterogeneity: Tau ² =	0.01; Chi ² = 9.30	, df = 8 (P =	0.32); I ² = 1
Test for overall effect:	Z = 2.35 (P = 0.0	2)	
Test for subgroup diffe	erences: Chi ² = 0.	85, df = 1 (P	P = 0.36), I ² =

www.criticalcarenutrition.com

Early EN (<24h) vs. Control

Study or sub-category	Early EN (<24 h) n/N	Control n/N	OR (fixed) 95% Cl	Weight %	OR (fixed) 95% Cl
Chiarelli 1990 Kompan 1999 Kompan 2004 Nguyen 2008 Chuntrasakul 1996 Pupelis 2001	0/10 0/17 0/27 6/14 1/21 1/30	0/10 2/19 1/25 6/14 3/17 7/30		13.40 8.89 19.95 18.38 39.38	Not estimable 0.20 [0.01, 4.47] 0.30 [0.01, 7.63] 1.00 [0.22, 4.47] 0.23 [0.02, 2.48] 0.11 [0.01, 0.99]
Total (95% CI) Total events: 8 (early EN (<24 Test for heterogeneity: Chi ² = Test for overall effect: Z = 2.33	119 h)), 19 (Control) 3.20, df = 4 (P = 0.52); I ² = 0.0 L (P = 0.02)	115 0%	0.1 0.2 0.5 1 2 5 10 Favours EN Favours control	100	0.34 [0.14, 0.85]

Early enteral nutrition lower mortality Odds ratio 0.34 (0.14-0.85) Numbers needed to treat: II to prevent one death

Mortality

Very Early enteral nutrition is best

Energy overfeeding is harmful

N=843

Daily protein intake groups ^a

Energy overfeeding (y/n) ^b

Sepsis (y/n)

APACHE-II score

^a Protein intake groups were <0.8, 0.8 - <1.0, 1.0 - <1.2, and \geq 1.2 g/kg. ^b day 4 energy overfeeding was defined as an energy intake of more than 110% of measured energy expenditure

OR	95% CI	P-value
0.85	0.73-0.99	0.047
1.62	I.07-2.44	0.022
1.77	1.18-2.65	0.005
1.04	1.02-1.05	<0.001

Relevant in EN?

NO. IN ICU					
Late initiation	2328 1399	913	655	436	313
Early initiation	2312 1438	975	736	517	371

Epanic trial n= 4640

Early PN trial n = 1363

Mean Energy intake in the MetaPlus trial n= 301

intake from study products as percentage of calculated energy target during ICU stay

Target

Means (95% CI) from day I until day 28.

All ITT analysis patients were included.

Energy targets were calculated as follows: 25 kcal/kg body weight * day, with a maximum of 2500 kcal/day.

ESPEN ICU guidelines 2018

- eat.
- Grade of recommendation: GPP strong consensus (100 % agreement)
- should be performed/initiated rather than delaying EN.
- Grade of recommendation: B strong consensus (100 % agreement)
- in critically ill adult patients rather than early PN.
- Grade of recommendation: A strong consensus (100 % agreement)

• Recommendation 3: Oral diet shall be preferred over EN or PN in critically ill patients who are able to

• Recommendation 4 : If oral intake is not possible, early EN (within 48 hours) in critically ill adult patients

• Recommendation 5: If oral intake is not possible, early EN (within 48 hours) shall be performed/initiated

Conclusions

- EN is first line therapy in ICU patients
- No risk of overfeeding
- EN is essential and trophic for the gut, the microbiota
- Probably non-nutritional aspects more important
- Trend to mortality reduction, less infections

