

Masterclass Voeding 2019

How to reach protein targets without overfeeding?

Arthur R.H. van Zanten, MD PhD, Internist-intensivist

This content may not be amended, modified or commercially exploited without prior written consent

Head of ICU & Research Gelderse Vallei Hospital, Ede, The Netherlands

E-mail: zantena@zgv.nl

Dr. van Zanten has received honoraria for advisory board meetings, lectures, research and travel expenses from:

- **Astellas**
- **Baxter**
- **BBraun**
- **Cardinal Health**
- **Fresenius Kabi**
- Gilead
- Lyric
- Mermaid
- MSD
- **Nestlé-Novartis**
- **Nutricia-Danone**
- Pfizer

Other COI:

- **ESPEN** guidelines committee **Critical Care Nutrition for Adults**
- **ESICM Working Group Gastrointestinal Failure**
- **NESPEN Executive Team**
- **Chair Netherlands Sepsis Guideline Working Group Dutch Working Party on Antibiotic Policy Guideline Committee for** the Management of Fungal Infections

Content

- **Rationale for high protein delivery in critical illness** •
- Are proteins always good? \bullet
- **Results of the Protinvent Study** ullet
- Why do we need higher protein to energy ratio enteral feeds? ullet
- **Results of the Protill Study** •
- •

Practical recommendations for proteins during the patient journey

Clinical Nutrition 38 (2019) 48-79

ESPEN Guideline

ESPEN guideline on clinical nutrition in the intensive care unit

Pierre Singer ^{a, *}, Annika Reintam Blaser ^{b, c}, Mette M. Berger ^d, Waleed Alhazzani ^e, Philip C. Calder ^f, Michael P. Casaer ^g, Michael Hiesmayr ^h, Konstantin Mayer ⁱ, Juan Carlos Montejo ^j, Claude Pichard ^k, Jean-Charles Preiser ¹, Arthur R.H. van Zanten ^m, Simon Oczkowski ^e, Wojciech Szczeklik ⁿ, Stephan C. Bischoff ^o

Contents lists available at ScienceDirect

Clinical Nutrition

journal homepage: http://www.elsevier.com/locate/clnu

Clin Nutr 2019

Pre-morbid condition Acute illness

Underlying nutritional risk/ underlying functional status

Inflammation

Patients with a high BMI have better survival odds in the ICU: "obesity paradox"

BMI is not an independent predictor of mortality when muscle area is accounted for.

Skeletal Muscle

Adipose Tissue

Weijs et al. Critical Care 2014 18:R12

In MODS: Muscle mass loss 1 kg per day

Time from admission, days

Puthucheary ZA et al., JAMA 2013

Differences feeding in health and during critical illness

Glycogenolysis for glucose 个个个 → Lipolysis for FFA 个个个 Muscle wasting for AA 个个个

Endogenous EE Production 个个个

	Glycogenolysis for glucose 0	
→	Lipolysis for FFA 0	Endogenous EE
	Muscle wasting for AA 0	Production 0

What is essential for the (elderly) ICU patient?

Ferrante LE et al. Chest. 2018 Jun;153(6):1378-1386.

Consequences of ICU Acquired Weakness y/n

Last MRC sum score recorded in the ICU

MRC sum score

- Involves the assessment of muscle power from 3 movements of each limb:
 - Shoulder abduction
 - Elbow flexion
 - Wrist extension
 - Hip flexion
 - Knee extension and
 - Ankle dorsiflexion.
- Maximal power graded according to MRC scale.
- Total score =60

- Deltoid
- Biceps
- Wrist extensor
- Ileopsoas
- Quadriceps femoris
- Tibialis anterior

Strong association of ICU discharge weakness and 1 year mortality

Hermans G et al. Am J Resp Crit Care Med 2014;190:410-420

5 years after ARDS ICU treatment: ICU acquired weakness persists for years....

More Protein and Energy Associated With Lower **Mortality in Higher Risk Patients**

Sample in ICU ≥ 4 d						
	Protein Intake (per 10% of Goal)			Energy Intake (per 10% of Goal)		
Outcome	Low NUTRIC ScoreHigh NUTRIC ScoreOutcome $(n = 1,217)$ $(n = 1,636)$			Low NUTRIC Score (n = 1,217)	High NUTRIC Score (n = 1,636)	
Mortality ^{a,b}	0.952 (0.895-1.011)	0.930 (0.892–0.969)⁰		0.962 (0.904–1.023)	0.927 (0.893–0.962)°	
Adjusted ^d	0.998 (0.936-1.064)	0.934 (0.894-0.975)°		1.011 (0.946-1.079)	0.929 (0.893−0.966)°	
TDA ^{f,g}	0.970 (0.936–1.006)	1.004 (0.967-1.043)		0.956 (0.921−0.992)°	0.995 (0.959−1.032)°	
Adjusted ^d	1.013 (0.975-1.052)	1.051 (1.012-1.091)°		0.998 (0.958–1.039)	1.045 (1 .007−1.085)°	
Sample in ICU \ge 12 d						
	Protein Intake (per 10% of Goal) ^h			Energy Intake (per 10% of Goal) ^h		
Outcome	Low NUTRIC Score (n = 711)	High NUTRIC Score (n = 891)		Low NUTRIC Score (n = 711)	High NUTRIC Score (n = 891)	
Mortality ^{a,b}	1.059 (0.964-1.165)	0.913 (0.853–0.977) ^e		1.069 (0.975–1.173)	0.909 (0.854–0.967)	
Adjusted ^d	1.052 (0.954-1.156)	0.899 (0.84–0.963)°		1.067 (0.967-1.178)	0.884 (0.829−0.941) ^c	
TDA ^{f,g}	0.963 (0.913-1.016)	1.062 (1.002-1.126) ^e		0.937 (0.888–0.989) ^e	1.048 (0.990-1.109)	
Adjusted ^d	0.999 (0.946-1.056)	1.092 (1.032−1.155) ^e		0.981 (0.925–1.040)	1.091 (1.032-1.155)	

Compher C et al. Crit Care Med 20917; 45:156–163

Hospital mortality per protein intake group

More protein intake is associated with lower in-hospital mortality

0.8 g/kg per day

1.2 g/kg per day

Weijs P. Crit Care 2014;18:701

A Star Star Star

Hyperglycemia

Refeeding syndrome

Clinical Nutrition cost (2017) 1-49

Clinical Nutrition

Contents lists available at ScienceDirect

journal homepage: http://www.elsevier.com/locate/cinu

Original article

Impact of caloric intake in critically ill patients with, and without, refeeding syndrome: A retrospective study

Laura E. Olthof⁴, W.A.C. Kristine Koekkoek^b, Coralien van Setten⁴, Johannes C.N. Kars^e, Dick van Blokland², Arthur R.H. van Zanten¹

Department of Intensive Care Medicine, Colderse Vallei Haspital, Willy Brandsham IO, 6715 RI; Eds, The Netherlands Department of Internal Madicine, Gelderse Vallei Hospital, Willy Brandtlaun 30, 6745 RF, Ede. The Netherlands Geldense Vallet Hospital, Willy Brandsfram 10, 5715 RP, Ede, The Netherlands

Calories

Calories

Mitochondrial dysfunction

Autophagy deficiency

Delivered Calories/REE Percent

Proteins

Early versus Late Parenteral Nutrition in Critically Ill Adults

Michael P. Casaer, M.D., Dieter Mesotten, M.D., Ph.D., Greet Hermans, M.D., Ph.D., Pieter J. Wouters, R.N., M.Sc., Miet Schetz, M.D., Ph.D., Geert Meyfroidt, M.D., Ph.D., Sophie Van Cromphaut, M.D., Ph.D., Catherine Ingels, M.D., Philippe Meersseman, M.D., Jan Muller, M.D., Dirk Vlasselaers, M.D., Ph.D., Yves Debaveye, M.D., Ph.D., Lars Desmet, M.D., Jasperina Dubois, M.D., Aime Van Assche, M.D., Simon Vanderheyden, B.Sc., Alexander Wilmer, M.D., Ph.D., and Greet Van den Berghe, M.D., Ph.D.*

ORIGINAL ARTICLE

EPaNIC trial: primary end point and some secondary endpoints

Casaer M et al. N Engl J Med 2011; 365: 506-517

Proteins and Autophagy

- Method eukaryotic cells dispose damaged organelles or protein aggregates too large for proteasome ubiquitin system

- **Involves lysosomal system for** removing unfolded proteins, virus, bacteria, fat/carb, organelles
- Autophagy role in immunity, inflammation, infection, cancer, aging, pulmonary diseases (COPD), metabolic and neurodegenerative diseases

Early Parenteral Nutrition but not Enteral Nutrition induced an Autophagy Deficiency Phenotype

Data from the Epanic trial

Casaer MP, Van Den Berghe G. NEJM 2011;365:506

Epanic trial: Early Protein administration induced Deleterious Effects, Not Glucose: Autophagy suppression?

Casaer MP. Am J Respir Crit Care Med 2013;187:247-55.

Role of timing protein intake

Original article

Timing of PROTein INtake and clinical outcomes of adult critically ill patients on prolonged mechanical VENTilation: The PROTINVENT retrospective study

W.A.C. (Kristine) Koekkoek^{a,1}, C.H. (Coralien) van Setten^{a,1}, Laura E. Olthof^a, J.C.N. (Hans) Kars^b, Arthur R.H. van Zanten^{a,*}

^a Department of Intensive Care Medicine, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716 RP, Ede, The Netherlands ^b Department of Information Technology and Datawarehouse, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716 RP, Ede, The Netherlands

Clinical Nutrition xxx (2018) 1-8

Koekkoek WA, Van Setten C, Van Zanten AR. Clin Nutr. 2018 Feb 17. pii: S0261-5614(18)30075-X

PROTINVENT study: **Role of timing protein intake and 6-month mortality**

PROTein INtake and clinical outcome in adult critically ill patients on prolonged mechanical VENTilation: n=456; 2011-2015, Mechanical Ventilation > 7 days; Primary endpoint 6 month mortality

Days in ICU from admission

Early (< 3 days) high protein intake associated with higher mortality, after day 3 high intake is better. Is low to high intake after 3 days better?

Koekkoek WA, Van Setten C, Van Zanten AR. Clin Nutr. 2018 Feb 17.

Effect on protein intake (day 1-3) and (day 4-7) & 6-month mortality

A time-dependent effect of protein

Koekkoek WA, Van Setten C, Van Zanten AR. Clin Nutr. 2018 Feb 17. pii: S0261-56/14(18)30075-X

Effect of Protein intake (day 1-3) and (day 4-7) on ICU, in-hospital and 6-month mortality rates

Koekkoek WA, Van Setten C, Van Zanten AR. Clin Nutr. 2018 Feb 17. pii: S0261-5&14(18)30075-X.

>0.8 g/kg/day week

<0.8 g/kg/day day 1-3 and > 0.8 day 4-7week

Conclusions PROTINVENT study

- ullet
- ulletassociated with lower 6-month mortality.
- ICU and hospital mortality and should be avoided.
- **Suggested targets:** \bullet

Time-dependent effect of protein intake during critical illness

Gradual increase from low protein intake during the first 2 days to intermediate on day 3-5 and high protein intake from day 6 is

Overall low protein intake is associated with the highest 6-month,

Day 1-2: < 0.8 g/kg/day, Day 3-5: 0.8 – 1.2 g/kg/day, Day 5 =>: >1.2 g/kg/day

Koekkoek WA, Van Setten C, Van Zanten AR. Clin Nutr. 2018 Feb 17. pii: S0261-56514(18)30075-X

Nutrition in the ICU: new trends versus old-fashioned standard enteral feeding?

Kristine W.A.C. Koekkoek and Arthur R.H. van Zanten

Hospital mortality per protein intake group

More protein intake is associated with lower in-hospital mortality

0.8 g/kg per day

1.2 g/kg per day

Weijs P. Crit Care 2014;18:701

Original Communication

Association of PROtein and CAloric Intake and Clinical Outcomes in Adult SEPTic and Non-Septic ICU Patients on Prolonged Mechanical Ventilation: The PROCASEPT Retrospective Study

Marie-Sophie Louise Yvonne de Koning, MD¹; Wilhelmina Aria Christina (Kristine) Koekkoek, MD²; Johannes Cornelis Nicolaas (Hans) Kars, MSc³; and Arthur Raymond Hubert van Zanten, MD, PhD¹

Journal of Parenteral and Enteral Nutrition Volume 0 Number 0 xxx 2019 1-10 © 2019 The Authors Journal of Parenteral and Enteral Nutrition published by Wiley Periodicals, Inc. on behalf of American Society for Parenteral and Enteral Nutrition DOI: 10.1002/jpen.1663 wileyonlinelibrary.com

WILEY

Energy intake in Sepsis Day 1-3

0,5

0

Hazaı

<80% target 80-110% target >110% target

Energy intake in Sepsis Day 4-7

Divergent autophagy response in critical illness

block was related to an accumulation of autophagosomes/autolysosomes, which indicates an impairment in the last steps of the autophagy process.

Tardif N, Rooijackers O et al. Nature Science Report 2019 45:1283–1287

In MODS: Muscle mass loss 1 kg per day

Time from admission, days

Puthucheary ZA et al., JAMA 2013

Myonecrosis and inflammation: Myositis

Protein synthesis, muscle mass, ultrasound are strongly associated with energy (ATP)

Without solving the energy problem the loss in muscle mass cannot be prevented

Anabolic signalling and inflammation are strongly associated

Without solving the inflammation muscle mass loss cannot be prevented

Not proteins or calories provided, but cellular energy is king

Zudin Puthucheary

Arthur van Zanten

In muscles deficient of ATP, exercise may induce more necrosis & inflammation, as exercise is a catabolic metabolic event, we have to search for alternative routes to provide energy without the cost of ATP production

Bob Martindale

Steve McClave

Expert meeting AS, Phoenix Arizona, USA, March 2019

Х

Alternatives

Parenteral Amino Acid Supplementation

Bioavailability

Costs Infection No splanchnic first pass Workload **Discarded volume Additional volume**

Opening closed feeding system Contamination Workload **Additional volume**

Enteral Protein Supplementation

Very High Protein Enteral Feeds

Costs

No overfeeding

Costs? Limited experience **GI-intolerance for** hydrolyzed formulations

Why do we need higher protein to energy ratio feeds?

	Standard high intact- protein * (SHPF)		
	Per 100 ml	% of energy	
Energy	125 kcal		
Protein**	6.3 g	20 %	
Carbohydrate	14.2 g	45 %	
Fat	4.9 g	35%	

Patient 100 kg

Target calories 20 kcal/kg per day = 2000 kcal

Protein target 1.5 g/kg per day = 150 g proteins

Energy strategy

2000 kcal/ 1,25 mL = 1600 mL

150 g proteins/ 0,063 mL = 2381 mL

Protein strategy

Why do we need higher protein to energy ratio feeds?

- 70-80% of energy target is optimum •
- **Overfeeding >110% of REE is associated with increased mortality** \bullet
- >1.3 g/kg per days of protein intake achieved is target (ESPEN guideline • 2018)
- Enteral feeding products should have protein content of >30% to prevent \bullet overfeeding while achieving the protein target.
- NB: more intake of a low protein/energy ratio product will lead to ulletoverfeeding when the protein target should be achieved

van Zanten et al. Critical Care (2018) 22:156 https://doi.org/10.1186/s13054-018-2070-5

RESEARCH

Very high intact-protein formula successfully provides protein intake according to nutritional recommendations in overweight critically ill patients: a double-blind randomized trial

Arthur R. H. van Zanten^{1*}, Laurent Petit², Jan De Waele³, Hans Kieft⁴, Janneke de Wilde⁵, Peter van Horssen⁵, Marianne Klebach⁵ and Zandrie Hofman⁵

Critical Care

Open Access

Investigators

Arthur R.H. van Zanten, MD, PhD; PI Gelderse Vallei Hospital, Ede, The Netherlands Laurent Petit, MD, PhD Hopitaux de Bordeaux, France Jan De Waele, MD, PhD University Hospital, Gent, Belgium Hans Kieft, MD, PhD Isala Klinieken, Zwolle, The Netherlands Janneke de Wilde, PhD; Nutricia Research, Utrecht, The Netherlands Peter van Horssen, PhD; Nutricia Research, Utrecht, The Netherlands Marianne Klebach, MSc; Nutricia Research, Utrecht, The Netherlands Zandrie Hofman, MSc Nutricia Research, Utrecht, The Netherlands

Van Zanten AR et al Crit Care. 2018 Jun 12;22(1):156.

Study products and feeding regimen

	New very high intact- protein (VHPF)		Standard high intact- protein * (SHPF)	
	Per 100 ml	% of energy	Per 100 ml	% of energy
Energy	125 kcal		125 kcal	
Protein**	10 g	32 %	6.3 g	20 %
Carbohydrate	10.3 g	33 %	14.2 g	45 %
Fat	4.9 g	35%	4.9 g	35%

* : Nutrison Protein Plus (Nutricia, Zoetermeer),

** : intact protein sources: 35% whey, 25% casein, 20% soy and 20% pea

Feeding regimen recommended in protocol: Start enteral feeding with 20 ml/hour, Assess Gastric Residual Volume (GRV) and increase enteral feeding with 20 ml/hour every 6 hour, Target 25 kcal/kg bw per day, If BMI > 30 kcal/m², the Ideal Body Weight (IBW) was defined: 30 x height²

42

Patient characteristics

		SHPF (standard) (N = 22)	VHPF (new) (N = 22)
Sex (Male) Sex (Female)	n (%) n (%)	13 (59.1%) 9 (40.9%)	9 (40.9%) 13 (59.1%)
Age (years)	Mean (sd)	60.8 (15.2)	63.9 (13.3)
Body weight (kg)	Mean (sd)	91.2 (20.7)	84.9 (18.3)
BMI (kg/m²)	Mean (sd)	30.7 (8.4)	30.3 (4.1)
 Type of patient Medical Surgical Surgical non-trauma Surgical trauma* Trauma Trauma non-surgical 	n (%) n (%) n (%) n (%) n (%)	9 (40.9%) 10 (45.5%) 4 (18.2%) 6 (27.3%) 9 (40.9%) 3 (13.6%)	8 (36.4%) 11 (50.0%) 4 (18.2%) 7 (31.8%) 10 (45.5%) 3 (13.6%)
SOFA score from screening	Median (Q1-Q3)	9 (7-11)	10 (9-11)
APACHE II score at baseline Predicted mortality (%) Adjusted predicted mortality (%)	Median (Q1-Q3) Mean (sd) Mean (sd)	24 (18-27) 48.4 (18.7) 38.7 (19.8)	25 (21-28) 52.6 (17.7) 42.7 (20.3)

*surgical trauma patients were included in both the surgical and trauma subgroup of patients

Van Zanten AR et al Crit Care. 2018 Jun 12;22(1):156.

Protein intake at day 5

Control

Test

VHPF: Statistically significant higher protein intake at day 5

		SHPF (N = 22)	VHPF (N = 22)	p-value
	Mean (SD)	0.68 (0.47)	1.32 (0.80)	
ABW	Median (Q1-Q3)	0.6 (0.3-1.2)	1.6 (0.4-2.0)	
	LS mean	0.76	1.49	<0.001
	(95% CI)	(0.49, 1.03)	(1.21, 1.78)	
	Mean (SD)	0.72 (0.47)	1.37 (0.82)	
IBW	Median (Q1-Q3)	0.6 (0.3-1.2)	1.9 (0.5-2.0)	
	LS mean	0.80	1.54	<0.001
	(95% CI)	(0.52, 1.07)	(1.26, 1.83)	

Van Zanten AR et al Crit Care. 2018 Jun 12;22(1):156.

Very high protein feed: Significant higher protein intake day 1-10

Protein intake relative to target protein intake

* Statistically significant VHPF vs SHPF (p<0.05)

Van Zanten AR et al Crit Care. 2018 Jun 12;22(1):156.

Energy intake day 1 - 10

No statistically significant differences found in energy intake **between VHPF and** SHPF

day 10Van Zanten AR et al Crit Care. 2018 Jun 12;22(1):156.

Plasma amino acid concentrations at baseline and day 5

VHPF: Statistically significant higher concentrations of plasma amino acids

: Statistically significant higher amino acid concentration at Day 5 (p=0.031) : Statistically significant within-group increase from baseline (both p < 0.001) : Significantly higher increase from baseline compared to control (p=0.031)

Clinical outcome parameters

			SHPF (N = 22)	VHPF (N = 22)	P value
Mortality rates:	ICU Hospital Total 28 days Total 42 days	n (%) n (%) n (%) n (%)	2 (9.1%) 3 (13.6%) 3 (13.6%) 3 (13.6%)	1 (4.5%) 2 (9.1%) 2 (9.1%) 3 (13.6%)	0.637 ⁶ 0.638 ⁶ 0.560 ³ 0.886 ³
Duration of ICU sta	ay	Mean (SD) 95% CI	18.3 (12.7) 12.7 – 23.9	18.4 (13.4) 12.4 – 24.3	0.913 ¹
Duration of hospita	al stay	Mean (SD) 95% CI	28.2 (13.2) 22.4 – 34.1	28.5 (13.3) 22.5 – 34.4	0.955 ¹
Duration of first ve period	ntilation	Mean (SD) 95% CI	7.4 (5.4) 5.0 – 9.8	10.0 (8.7) 6.1 – 13.9	0.234 ¹
Sofa Scores :	Screening Day 5 Day 10 End of study Day 28	Median [IQR]	9 [7-11] 6 [4-8] 5 [4-9] 2 [1-3] 1 [0-2]	10 [9-11] 6 [3-8] 4 [1-7] 2 [1-3] 3 [2-3]	0.514 ⁴ 0.647 ⁴ 0.432 ⁴ 0.608 ⁴ 0.446 ⁴

Х

ess а

Gastro intestinal tolerance

Incidence of diarrhoea¹, n (%) **95% confidence interval (%)**

Incidence of constipation², n (%) **95% confidence interval (%)**

Incidence of vomiting³, n (%)

Gastric Residual Volume > 500 ml

¹Incidence of diarrhoea was collected during the first 10 days of ICU stay and is defined as DDS > 15 for at least one day and/or a DDS \ge 6 for at least two consecutive days.

²Incidence of constipation was collected during the first 10 days of ICY stay and is defined as no bowel evacuation within 72 hours. ³Based on recorded Adverse Events (excluding procedural vomiting) collected during ICU stay ⁴P value derived from a Chi-squared Test.

⁵P value derived from a Fischer's Exact Test ⁶Cochran-Mantel-Haenszel test.

SHPF (N=22)	VHPF (N=22)	P value
11 (50.0) (28.2 - 71.8)	8 (36.4) (17.2 - 59.3)	0.3614
16 (72.7) (49.8 - 89.3)	13 (59.1) (36.4 - 79.3)	0.3404
6 (27.3%)	5 (22.7%)	1.000 ⁵
5 (22.7%)	4 (18.2%)	0.5676

(Serious) adverse events

Any adverse event, k¹, n (%)²

Any related adverse event, k¹, n (%)²

- Vomiting
- **Procedural vomiting**

Any serious adverse event, k¹, n (%)²

Any related serious adverse event, k¹, n (%)²

¹number of events. ²number of subjects with one or more events;

No clinically relevant differences as concluded by medical monitor in:

- Serious) Adverse Events
- Liver function: Alkaline phosphatase, ALAT, ASAT, GGT and ammonia
- Kidney function: Creatinine and BUN

SHPF (N = 22)	VHPF (N = 22)
34, 16 (72.7%)	23, 12 (54.5%)
3, 3 (13.6%) 1, 1 (2.3%) 2, 2 (9.1%)	0, 0 (0.0%)
7, 6 (27.3%)	8, 5 (22.7%)
0, 0 (0.0%)	0, 0 (0.0%)

Conclusions Protill Study

enteral formula (5 g/100 ml) based on intact proteins showing:

Protein provision according to recommendations is feasible with a polymeric enteral nutrition formula

No signs of increased intolerance or adverse events

First trial comparing very high protein (8 g/100 ml) with standard high protein

No risk of overfeeding

Increased amount of protein provided is absorbed and available as substrate for protein synthesis

Van Zanten AR et al Crit Care. 2018 Jun 12;22(1):156.

Feeding regimen with new very high protein product

(1.25 kcal/ml, 8 g protein/100 kcal)

Target ranges based on **PROTINVENT study** and nutritional guidelines

Protein intake target 1.2 – 2.0 g/kg bw: ASPEN

Protein intake target >1.3 g/kg bw: ESPEN

Target ranges based on nutritional guidelines

Target ranges based on -Hypocaloric feeding -Early trophic feeding

Feeding protocol

energy intake target 80 -100 % of 20 – 25 kcal/kg bw

As target achieved during EN is only 80-85% set targets high enough to meet the 1.3 g/kg bw for example 1.5-1.6 g/kg per dag

Van Zanten AR et al 2018 Response letter Critical Care

Х

Muscles protein synthesis and exercise

High-protein diet alone is not enough

Early mobilization in ICU patients

Journal of Cachexia, Sarcopenia and Muscle (2016) Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/jcsm.12146

Exercise rehabilitation following intensive care unit discharge for recovery from critical illness: executive summary of a Cochrane Collaboration systematic review

Bronwen Connolly^{1,2,3*}, Lisa Salisbury⁴, Brenda O'Neill⁵, Louise Geneen⁶, Abdel Douiri^{3,7}, Michael P. W. Grocott^{8,9,10}, Nicholas Hart^{1,2,3}, Timothy S. Walsh¹¹ & Bronagh Blackwood¹²

Unable to determine an overall effect on functional exercise capacity or health-related quality of life of interventions initiated <u>after ICU discharge</u> for survivors of critical illness. Findings from ongoing studies are awaited.

REVIEW

Exercise in ICU patients: bed cycling and electrostimulation

Contents lists available at ScienceDirect

journal homepage: www.journals.elsevier.com/journal-of-critical-care

Interventions for the management and prevention of sarcopenia in the critically ill: A systematic review

Samuel P. Trethewey^a, Nicholas Brown^b, Fang Gao^{a,c}, Alice M. Turner^{a,d,*}

^a University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.

- ^b University of Birmingham, Birmingham, UK.
- ^c Birmingham Acute Care Research Group, University of Birmingham, Birmingham, UK.
- ^d Institute of Applied Health Research, University of Birmingham, Birmingham, UK.

NMES and exercise-based interventions may preserve muscle mass and function in patients with critical illness. There is a lack of consistency seen in the effects of these interventions. Further, large, high quality RCTs are required.

Journal of Critical Care 50 (2019) 287–295

Journal of Critical Care

Differential contractile response to NMES in ICU patients

Grunow JJ et al. Crit Care 2019; 23:308

Differential contractile response to NMES in ICU patients

Not all muscles are equal

Grunow JJ et al. Crit Care 2019; 23:308

How to monitor the effect of proteins and AA in critical illness?

CT scan

muscle ultrasound

MRI

muscle biopsy

Protein turnover studies using stable isotopes

Original article

NutritionDay ICU: A 7 year worldwide prevalence study of nutrition practice in intensive care

Total calories delivered (kcal/24h)

Mean weight: 75 kg Target: 75*25= 1875 kcal/day

Days in ICU

Bendavid I et al. Clin Nutr 2017;36:1122-1129

Post-ICU nutrition: percentage of target achieved

Ridley EJ, et al. JPEN J Parenter Enteral Nutr. 2019 Jan;43(1):88-95.

Removal of the feeding tube confers an acute drop in energy and protein intake of around 25-35%/day post-ICU

In preparation: Slingerland-Boot R, van der Heiden I, de Vries J, van Zanten AR.

Before tube removal After tube removal

Real intake is much lower, as ordered is not eaten

How much food to recover?

Starvation period: 1800 kcal/dag

MEN STARVE IN MINNESOTA

CONSCIENTIOUS OBJECTORS VOLUNTEER FOR STRICT HUNGER TESTS TO STUDY EUROPE'S FOOD PROBLEM

Wischmeyer Critical Care 2017, 21(Suppl 3):316

Minnesota starvation project

During 1 year: 2-2.5 g/kg/d (3x normal) 4000-4500 kcal/d (2-3x normal)

Starvation period: 1800 kcal/day

Wischmeyer Critical Care 2017, 21(Suppl 3):316

Zanten et al. Critical Care (2019) 23:368 https://doi.org/10.1186/s13054-019-2657-5

REVIEW

Nutrition therapy and critical illness: practical guidance for the ICU, post-ICU, and long-term convalescence phases

Arthur Raymond Hubert van Zanten^{1*}, Elisabeth De Waele^{2,3} and Paul Edmund Wischmeyer⁴

Critical Care

Open Access

Conclusions

- ulletwith increased mortality
- Early high protein (and caloric) intake is associated with higher 6-month •
- illness

Low protein intake during ICU stay and early caloric overfeeding is associated

mortality, whereas day 4-7 high protein intake is associated with lower mortality

Protein dose should be increased over time and during the phases of critical

•

Conclusions

- **ESPEN** guideline 2018: Gradual progressing to target over 3-5 days is recommendable both for energy and proteins
- **ESPEN** guideline 2018: after this phase protein intakes >1.3 g/kg/day are essential to improve outcome.
- NB: target achieved with EN is 80-85%, aim for 1.5 g/kg/day
- New very-high protein enteral and parenteral feeds are available to start, and advance feeding over days, meeting guideline recommendations for protein intake during critical illness, without the risk of overfeeding.

