



**Masterclass Voeding 2019** 

# Is there evidence for specific lipids in (par)enteral nutrition?

Arthur R.H. van Zanten, MD PhD, Internist-intensivist



Head of ICU & Research Wageningen University & Research Gelderse Vallei Hospital, Ede, The Netherlands

E-mail: zantena@zgv.nl





Dr. van Zanten has received honoraria for advisory board meetings, lectures, research and travel expenses from:

- Astellas
- Baxter
- BBraun
- Cardinal Health
- Fresenius Kabi
- Gilead
- Lyric
- Mermaid
- MSD
- Nestlé-Novartis
- Nutricia-Danone
- Pfizer

### Other COI:

- ESPEN guidelines committee Critical Care Nutrition for Adults
- ESICM Working Group
  Gastrointestinal Failure
- NESPEN Executive Team
- Chair Netherlands Sepsis Guideline Working Group Dutch Working Party on Antibiotic Policy Guideline Committee for the Management of Fungal Infections







- enteral and parenteral nutrition
- essential fatty acids
- concentrated source of calories
- building blocks for cell membranes







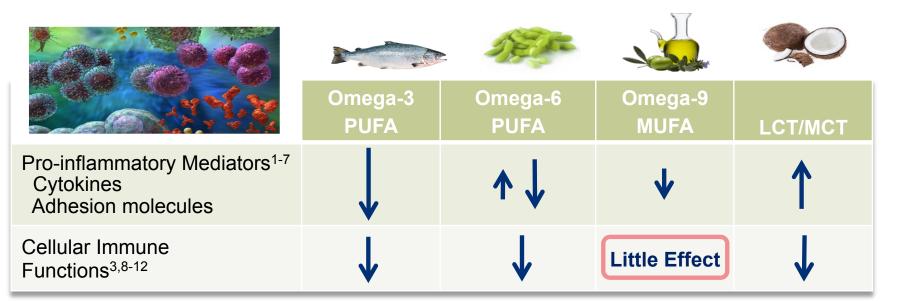


# Enteral lipids, focus on fish oil





# Which lipid should I choose for my patients?






Requires well controlled and clinically relevant trials in select patient populations using relevant dosing



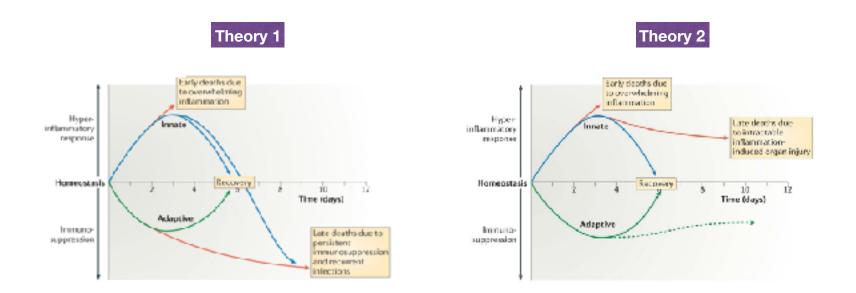
# Long Chain Fatty Acids: Many Immune Effects are class effects



Ziekenhuis Gelderse

 James MJ, et al. Am J Clin Nutr. 2000;71(suppl):343S-348S; 2. Oh DY, et al. Cell. 2010;142:687-698; 3. Buenestado A, et al. JPEN J Parenteral Enteral Nutr. 2006;30(4):286-296; 4. Lee JY, et al. J Biol Chem. 2001;276(20):16683-16689; 5. Suzuki M, et al. J Biol Chem. 2013;288(15):10684-10691; 6. Versleijen M, et al. Clin Nutr. 2005;24(5):822-829; 7. Wanten GJA, et al. Eur J Clin Invest. 1999;29(5):357-363; 8. Søyland E. et al. Eur J Clin Invest. 1993;23(2):112-121; 9. Calder PC et al. Clin Nutr. 1994;13(2):69-74; 10. Granato D, et al. JPEN J Parenter Enteral Nutr. 2000;24(2):113-118; 11. Bellinati-Pires R, et al. Barz J Med Biol Res. 1992;25(4):369-373; 12. Tull SP, et al. PLoS Biology. 2009;7(8):e1000177;
 Vanek WV, et al. Nutr Clin Pract. 2012;27:150–192.




# **Effects of fish oil**

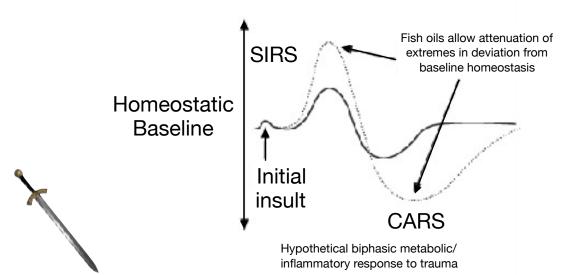
- Long-chain fatty acids from fish oils:
  - · EPA (eicosapentaenoic acid)
  - · DHA (docosahexaenoic acid)
- EPA and DHA modulate:
  - Synthesis of eicosanoids
  - Activity of the nuclear receptor
  - Nuclear transcription factors
  - Production of resolvins
- EPA and DHA have long been recognized as having anti-inflammatory and immunomodulatory effects









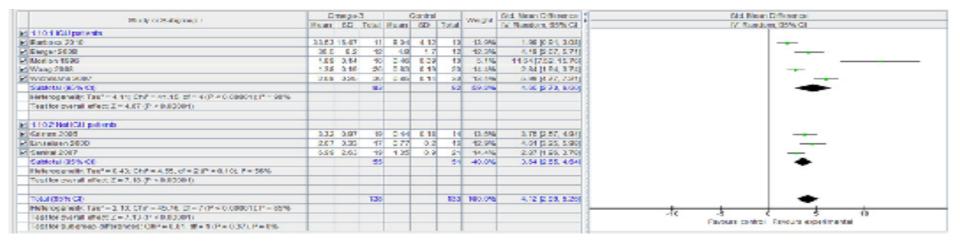

A new phenotype of multiple organ failure



Rosenthal MD, et al. J Adv Nutr Hum Metab 2015; 2: e784. Hotchkiss R. Nature Reviews Immunology 13, 862-874 (2013)

# PICS: A new phenotype of multiple organ failure






Can fish oil be a double-edged sword and have both anti-inflammatory properties in the SIRS phase and pro-inflammatory properties in the CARS phase?

Rosenthal MD, et al. J Adv Nutr Hum Metab 2015; 2

# Does fish oil supplementation lead to increased EPA levels? yes





### Standard mean difference 4.12 (95% CI 2.99-5.25)



This content may not be amended, modified or commercially exploited without prior written consent

Pradelli, et al. Critical Care 2012,16:R184.

# Does fish oil supplementation lead to increased DHA levels? yes



| STUDIOT SUBSTRUE F                                                                                                                                                             | 0     | Omeșa-3 | k 1   |      | Control |       | 100000000 | Sid. Mean Difference | 5td Mean Difference                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|-------|------|---------|-------|-----------|----------------------|--------------------------------------|
| Study or sungroup r                                                                                                                                                            | Mean  | 60      | Total | Rean | tC .    | Total | vvsijnt   | IV, Fanderr, 06% CI  | IV, Random, #6% DI                   |
| I.11.11CUpstenb  Motion 1916                                                                                                                                                   | 3.3   |         |       | 2.09 |         |       | 9.7%      |                      |                                      |
| ✓ Eerger 2008                                                                                                                                                                  | 50    | 12.6    | 12    | 31.4 | 4       | 12    | 17.4%     | 1.92(0.92, 2.92)     | +                                    |
| Ratiosa 2010                                                                                                                                                                   | 45,71 | 17.86   | 18    | -43  | 2351    | 10    | 18.046    | 0.26(-0.67, 1.12)    | +                                    |
| Custoral (85% Cl)<br>Hetersgeneith: Tau <sup>a</sup> = 4.7%; Ch <sup>a</sup> = 26.69, df = 2 (P < 0.00001) I <sup>a</sup> = 93%<br>Text for everall effect 7 = 2.09 eP = 0.04) |       |         |       |      |         | 32    | 45.1%     | 2.42(0.17, 5.43)     | -                                    |
| ≥ 1.11.2 NOTICO patents                                                                                                                                                        |       |         |       |      |         |       |           |                      |                                      |
| Sanical 2007                                                                                                                                                                   | 11 72 | 1 81    | 19    | 8.45 | 134     |       | 18,396    | 242[124, 280]        | -                                    |
| Linselsen 2000                                                                                                                                                                 | 5.60  | 0.00    | 17    | 5.72 | 0.67    | 16    | 10.076    | -0.05 [-0.72, 0.64]  | 4                                    |
| ✓ uninn 2006                                                                                                                                                                   | 0.88  | 1.51    | 19    | 3.75 | 3.0     | 14    | 17.575    | 2.07[121, 2.94]      | -                                    |
| Sulfoal(95% CI)                                                                                                                                                                |       |         | 55    |      |         | 51    | 54.9%     | 1.33-011.278         | •                                    |
| Heterogeneit;: Tex* = 1.47; Chr* = 20.03, df = 2 (P = 0.0004); P = 00%                                                                                                         |       |         |       |      |         |       |           |                      |                                      |
| Hest for overall effect Z = 1.81 (P = 0.07)                                                                                                                                    |       |         |       |      |         |       |           |                      |                                      |
| Total (95% Ct)                                                                                                                                                                 |       |         | 10    |      |         | 12    | 100.0%    | 1.84(0.85, 2.00)     | ▲                                    |
| Helerogeneil): Tax" - 1.84; Chi" - 47.78; 2f - 5 (F < 0.00001) I" - 1016                                                                                                       |       |         |       |      |         |       |           |                      |                                      |
| Test for everall effect Z = 3.04 (P = 0.012)                                                                                                                                   |       |         | _     |      |         |       |           |                      | -10 -5 0 s 10                        |
| Test for subgroup differences: CHP = 0.90, at = 1 (P = 0.13), P = 0%                                                                                                           |       |         |       |      |         |       |           |                      | Payours control Payours experimental |

### Standard mean difference 1.84 (95% CI 0.65-3.03)



This content may not be amended, modified or commercially exploited without prior written consent

Pradelli, et al. Critical Care 2012;16:R184.



# Does EPA and DHA from fish oil lead to reductions in proinflammatory mediators? yes

| Study or Subgroup                                                                  | 0    | meşa  | -0    |       | Contro |       | Malabi | Mean Difference    | Mean Difference                      |
|------------------------------------------------------------------------------------|------|-------|-------|-------|--------|-------|--------|--------------------|--------------------------------------|
| Slovy of Sourginup                                                                 | Mean | - 50  | Total | Near  | 10     | Total | Weight | IV, Randsm, 95% C1 | N.Raiden, 95% Cl                     |
| 115.1 ICU publierts                                                                |      |       |       |       |        |       |        |                    |                                      |
| K Wachder 1997                                                                     | 0.22 | 0.13  | 1     | 0.05  | 0.03   | 21    | 3.1%   | 0.17[0.11, 0.23]   |                                      |
| Wichmann 2107                                                                      | 0.1  | 0.014 | 3     | 0.035 | 0007   | - 30  | 37.8%  | 0.07 [0.06, 0.07]  | •                                    |
| Sublidat (95% Cit                                                                  |      |       | -40   |       |        | 51    | 45.0%  | 0.11(0.01, 0.22)   |                                      |
| Heterogeneily: Tau" + 0.01; Ohi" + 11.72; df + 1 (P = 3.0400); i* + 91%            |      |       |       |       |        |       |        |                    |                                      |
| Test for overall effect 7 = 2 15 (P = 0.03)                                        | _    |       |       |       |        |       |        |                    |                                      |
| 115.2 Not ICU patients                                                             |      |       | -     | -     |        |       |        |                    |                                      |
| Gimm 2906                                                                          | 0.07 | 0.05  | 15    | 0.01  | 0.02   | 14    | 23.6%  | 0.06 [0.04, 0.06]  |                                      |
| KSeller 2003                                                                       | 9.09 | 0.93  | 14    | 0.03  | 2.01   | 10    | 33.4%  | 0.09 [0.04, 0.08]  | -                                    |
| Outstated (25% Ch                                                                  |      |       | 33    | x     |        | - 30  | 54.0%  | 0.04 [0.05, 0.07]  | •                                    |
| Heterogeneily: Tau? = 0.00; Chi? = 0.00; If = 1.00; I? = 0%                        |      |       |       |       |        |       |        |                    |                                      |
| Test for overall effect Z =8.57 (P < 0.00901)                                      |      |       |       |       |        | _     |        |                    |                                      |
| Total (95% CI)                                                                     |      | -     | 82    | -     |        | 81    | 100.0% | 0.07 (0.05, 0.09)  | •                                    |
| Heterogeneity: Tau* = 0.00; CnP* = 12.33; df = 3 (P = 3.095); P = 76%              |      |       |       |       |        |       |        |                    |                                      |
| Test for overall effect Z = 7.24 (P < 0.00901)                                     |      |       |       |       |        |       |        |                    | -0.2 -0.1 ( C1 )2                    |
| Test for subgroup differences: Chi <sup>2</sup> = 1.01, d = 1.02 = 0.311, P = 1.2% |      |       |       |       |        |       |        |                    | Favours control Favours experimental |

Significantly greater reduction in IL-6 and a shift in the generation of leukotrienes towards the leukotriene-5 series, as indicated by the significant absolute increase in leukotriene B5 (LTB5), the absolute decrease of LTB4, and the significantly ameliorated LTB5: LBT4 ratio.

**Reflects Anti-inflammatory Response** 

This content may not be amended, modified or commercially exploited without prior written consen

Pradelli, et al. Critical Care 2012;16:R184.



# Enteral fish oil in Acute Respiratory Distress Syndrome



**Eden Omega trial** 

Factorial Design Study Enteral fish oil vs. Placebo (protein) Trophic vs. Full nutritional support Study was stopped early for futility after 143 & 129 patients in the n-3 and control groups

| Supplement                                                  | "Early Full"<br>Fast Ramp Up | "Early Trophic"<br>(10 ml/hr) |
|-------------------------------------------------------------|------------------------------|-------------------------------|
| N-3 + GLA + Antioxidants<br>(Module delivered as bolus bid) | N=250                        | N=250                         |
| Control Standard EN<br>(480 cal/ 20 g proteins)             | N=250                        | N=250                         |

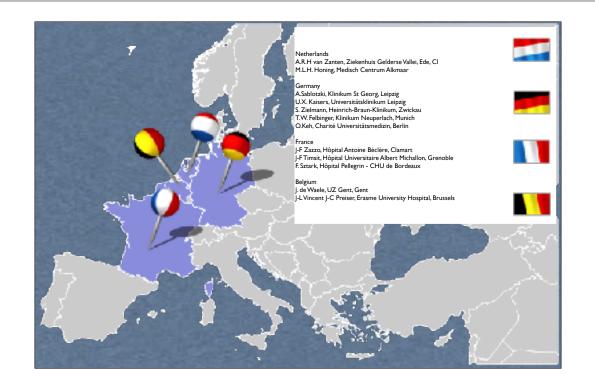




# **Enteral fish oil** in Acute Respiratory Distress Syndrome



Gelderse Valle


### **Eden Omega trial**

| Outcome                        | N-3<br>(n=143)   | Control<br>(n=129) | 95% CI Difference   | P value |
|--------------------------------|------------------|--------------------|---------------------|---------|
| Ventilator free days 28d       | 14.0 (11.1)      | 17.2 (10.2)        | -3.2 (-5.8 to -0.7) | 0.02    |
| Hospital mortality unadjusted  | 26.6 (19.3-33.8) | 16.3 (9.9-22.7)    | 10.3 (0.7 to 19.9)  | 0.054   |
| Adjusted mortality             | 25.1 (9.2-41.0)  | 17.6 (3.3-31.9)    | 7.5 (-3.1 to 18.1)  | 0.11    |
| Days not in ICU 28d            | 14.0 (10.5)      | 16.7 (9.5)         | -2.7 (-5.1 to -0.3) | 0.04    |
| Days without organ failure 28d | 12.3 (11.1)      | 15.5 (11.4)        | -3.2 (-5.9 to -0.5) | 0.02    |

Rice T. JAMA. 2011;306(14):1574-1581.



## MetaPlus trial





Van Zanten AR et al. JAMA 2014 Aug 6;312(5):514-24.



# Compositions Immune-modulating High Protein and HP control feed

during ICU stay up to maximum of day 28

| Nutrients (per 1500 mL)     | ІМНР                | НР                 |
|-----------------------------|---------------------|--------------------|
| Energy                      | 1920 kcal           | 1920 kcal          |
| Protein (g)                 | 112.5 g (23.4 En%)  | 112.5 g (23.4 En%) |
| Cas/ wheat hydr / Ala-Gln   | - 41% / 39% / 20%   | • 100 %/0/0        |
| Glutamine                   | - <b>30 g</b>       | • 9 g              |
| Carbohydrates               | 141 g - (29.3 En%)  | 231 g - (48 En%)   |
| Fructose                    | ■ 0 g               | • 0 g              |
| Fat                         | 96 g (45 En%)       | 55.5 g (26.3 En%)  |
| • MCT                       | • 19.5 g            | • 0 g              |
| • <b>EPA – DHA</b>          | • <b>7.5 g</b>      | • 0 g              |
| Anti-oxidants               | Above normal values | Normal values      |
| • vitamin C                 | = 690 mg            | • 195 mg           |
| • vitamin E (alpha toco)    | = 266 mg (400 IU)   | • 22.5 mg          |
| • Selenium                  | = 285 mcg           | • 112.5 mcg        |
| • Zinc                      | = 30 mg             | • 22.5 mg          |
| Other Vit / Min./ trace el. | Normal values       | Normal values      |
| Fiber                       | 22.5 g (2.3 En%)    | 22.5 g (2.3 En%)   |

Van Zanten AR et al. JAMA 2014 Aug 6;312(5):514-24.

Ziekenhuis Gelderse

Vallei



# **Incidence new infections**

| Primary Outcome Measure                          | IMHP  | HP    | P value |
|--------------------------------------------------|-------|-------|---------|
|                                                  | n=152 | n=149 |         |
| All                                              | 53%   | 52%   | 0.961   |
|                                                  |       |       |         |
| <b>Medical</b><br>(IMHP n=54 vs. Protison n=55)  | 39%   | 47%   | 0.377   |
| <b>Surgical</b><br>(IMHP n=81 vs. Protison n=75) | 62%   | 51%   | 0.164   |
| <b>Trauma</b><br>(IMHP n=55 vs. Protison n=54)   | 58%   | 67%   | 0.361   |

• % of subjects with at least one infection after start study product, using CDC-infection criteria

• No statistical significant differences between IMHP and HP based on Chi square tests.



## **Mortality**

|                            | 28-days<br>Incider | mortality<br>nce (%) |         |
|----------------------------|--------------------|----------------------|---------|
|                            | IMHP               | HP                   | p value |
| <b>All</b><br>(n=168)      | 20%                | 17%                  | 0.420   |
|                            |                    |                      |         |
| <b>Medical</b><br>(n=109)  | 35%                | 24%                  | 0.186   |
| <b>Surgical</b><br>(n=156) | 14%                | 16%                  | 0.670   |
| <b>Trauma</b><br>(n=109)   | 7%                 | 4%                   | 0.679   |

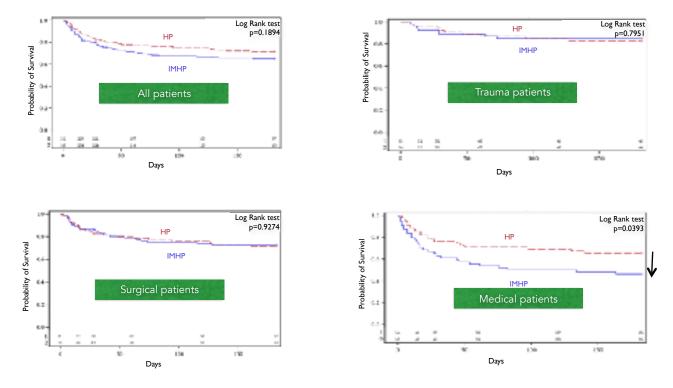
ths mortality dence (%) ΗP p value 0.212 28% 35% 0.044 28% 0.900 17% 0.759

Differences between IMHP and HP based on Chi square tests.



# 6-months mortality Cox hazard model

|                           | Hazard Ratio | Lower Limit | Upper Limit | P value |
|---------------------------|--------------|-------------|-------------|---------|
| IMHP vs. HP               | 1.57         | 1.03        | 2.39        | 0.036   |
| Age (70-80 vs. age (>80)  | 0.47         | 0.27        | 0.81        | 0.006   |
| Age (50-70) vs. age (>80) | 0.24         | 0.14        | 0.43        | <0.001  |
| Age (<50) vs. age (>80)   | 0.12         | 0.05        | 0.27        | <0.001  |
| APACHE-II score (unit)    | 1.05         | 1.02        | 1.09        | <0.001  |


After adjustment for age and APACHE-II score, risk of death is 57% higher for patients on IMHP versus control feed patients (P=0.036)

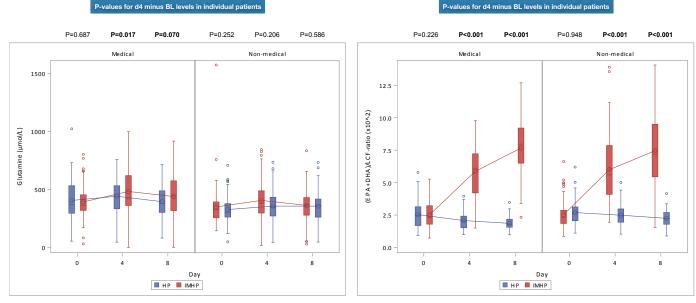
pre-defined covariates: age (<50, 51-70, 71-80, >80 yrs), sex, BMI, APACHE-II score, adj. pred. mortality, screening SOFA score, baseline glutamine, baseline glucose, type of patient (medical, surgical non trauma, surgical trauma, trauma non surgical), start study product since ICU admission, occurrence of preexisting infection, and treatment with antibiotics at start of study. The final model was constructed using univariate screening followed by a stepwise variable-selection procedure.

Van Zanten AR et al. JAMA 2014 Aug 6;312(5):514-24.



# 6-months Kaplan-Meier survival MetaPlus trial




This content may not be amended, modified or commercially exploited without prior written consent

Van Zanten AR et al. JAMA 2014 Aug 6;312(5):514-24.



# Does the intervention lead to increased plasma levels?

### Proof of concept: MetaPlus post-hoc analysis



Glutamine plasma levels d0, d4 and d8

(EPA+DHA)/LCF-ratio plasma levels d0, d4 and d8

#### Hofman D, ... van Zanten AR. Ann. Intensive Care (2016) 6:119



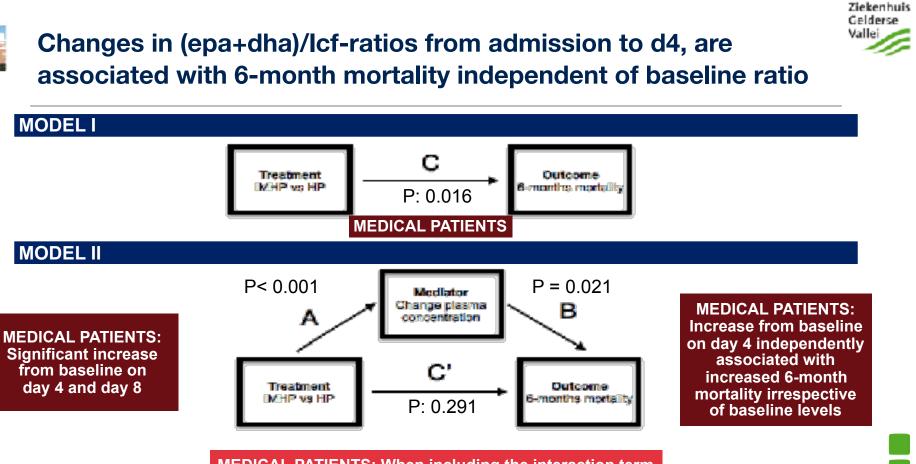
# high (epa+dha)/lcf-ratios on ICU admission are not associated with increased 6-month mortality

|                            |          | Univariate Analysis | 5       | Multivariate Analysis |          |         |  |
|----------------------------|----------|---------------------|---------|-----------------------|----------|---------|--|
| Immune-modulating Nutrient | Coef     | Std Err             | P-value | Coef                  | Std Err  | P-value |  |
| Glutamine                  | 0.00119  | 0.00059             | 0.046   | 0.00034               | 0.00065  | 0.599   |  |
| (EPA+DHA)/LCF-ratio        | 21.17397 | 9.87606             | 0.032   | -2.08190              | 10.41535 | 0.842   |  |
| Selenium                   | 0.06623  | 0.16564             | 0.689   | 0.11961               | 0.14465  | 0.408   |  |
| Vitamin E                  | -0.00416 | 0.01402             | 0.766   | -0.00750              | 0.01458  | 0.607   |  |
| Vitamin C                  | 0.00297  | 0.00754             | 0.694   | -0.00507              | 0.00817  | 0.535   |  |
| Zinc                       | 0.01189  | 0.02532             | 0.639   | 0.02327               | 0.02437  | 0.340   |  |

Coef = Coefficient; Std Err = parameter estimate standard regression; (EPA+DHA)/LCP-ratio = (eicosapentaenoicacid+decosahexaenoicacid)/long chain polyunsaturated fatty acid-ratio. The coefficient is the Cox Proportional Hazard Regression Parameter estimate; a positive coefficient indicates a worse prognosis and a negative coefficient indicates a protective effect of the variable on 6-month mortality. Chisquare statistic testing the null hypothesis that the estimate is zero.



# Are increased levels on d4 and d8 associated with 6-month mortality in medical patients?




Baseline to day 4 Baseline to day 8 95% CI of the Hazard 95% CI of the Immunonutrient Coef. Std Err P-value Coef. Std Err Hazard Ratio P-value Ratio Hazard Ratio Hazard Ratio 0,001 0,001 0,302 Glutamine (µmol/L) -0,002 0,998 [0.996, 1.000]0,111 -0,001 0,999 [0.996, 1.001](EPA+DHA)/LCF-ratio 0,162 0,070 0,055 0,053 1,057 [0.949, 1.170] 0,294 1,176 [1.023, 1.348] 0,021 (x10-2) 0,457 -0,551 Selenium (µmol/L) 0,487 1.628 [0.644, 3.892] 0,286 0,615 0,576 [0.159, 1.776] 0,370 Vit E (µmol/L) -0,005 0,015 0,995 [0.964, 1.024] 0,758 0,009 0,012 1,009 [0.985, 1.031] 0,446 Vit C (µmol/L) 0,011 0,994 [0.971, 1.016] 0,614 -0,001 0,011 0,999 [0.976, 1.020] 0,944 -0,006 Zinc (µmol/L) -0.013 0.049 0.988 [0.890, 1.080] 0.799 -0.093 0.064 0.912 [0.794, 1.020] 0.145

MetaPlus post-hoc analysis: n=301

This content may not be amended, modified or commercially exploited without prior written consent

#### Hofman D, ... van Zanten AR. Ann. Intensive Care (2016) 6:119



MEDICAL PATIENTS: When including the interaction term EPA+DHA/LCP-ratio C' is no longer significant



Review article

Current evidence on  $\omega$ -3 fatty acids in enteral nutrition in the critically ill: A systematic review and meta-analysis



24 trials, 3574 ICU

patients treated with fish oil EN vs. no fish oil EN Ziekenhuis Gelderse Vallei

WAC (Kristine) Koekkoek M.D.\*, Vasilianna Panteleon M.Sc.\*, Arthur RH van Zanten M.D., Ph.D.\*\*

\*Department of Intensive Core Medicine: Golderse Variei Hospital: Ede, The Netherlands \*Wageningen (Intensity, Wegeningen, The Netherlands)

Data in Brief 21 (2008) 504-515



Contents lists available at EcknooDiract

journal homegage: www.elsevier.com/locate/dib

Data Article



Data on effects, tolerability and safety of Omega-3 Fatty Acids in Enteral Nutrition in the Critically ill



Koekkoek K, Panteleon V, van Zanten AR. Data Brief. 2018;21:604-615

Koekkoek K, Panteleon V, van Zanten AR. Nutrition 2019;59:56-68



|                                  | Fish oil g             |           | Control    |            |             | Risk Ratio                           | Risk Ratio                                              |
|----------------------------------|------------------------|-----------|------------|------------|-------------|--------------------------------------|---------------------------------------------------------|
| Study or Subgroup                | Events                 | Total     | Events     | Total      | Weight      | M-H, Random, 95% CI                  | M-H, Randern, 95% Cl                                    |
| 1.6.1 ARDS                       |                        |           |            |            |             |                                      |                                                         |
| Elamin 2012                      | 0                      | 9         | 1          | 8          | 0.2%        | 0.30 [0.01-6.47]                     |                                                         |
| Gadek 1999                       | 11                     | 70        | 19         | 76         | 51%         | 0.63 [0.32-1.23]                     |                                                         |
| Orau-Carmona 2011                | 11                     | 61        | 11         | 71         | 3.9%        | 1.16 (0.54-2.49)                     |                                                         |
| Parish 2014                      | 7                      | 29        | 9          | 29         | 32%         | 0.78 [0.33-1.81]                     |                                                         |
| Pontes-Arruda 2006               | 26                     | 83        | 38         | 82         | 142%        | 0.68 [0.46-1.00]                     |                                                         |
| Shirai 2015                      | 3                      | 23        | 3          | 23         | 1.0%        | 1.00 [0.22-4.45]                     |                                                         |
| Singer 2006<br>Subtotal (95% CI) | 14                     | 48<br>321 | 26         | 49<br>338  | 86%<br>364% | 0.57 [0.34-0.96]<br>0.69 [0.54-0.89] | •                                                       |
| Total events                     | 72                     |           | 107        |            |             |                                      |                                                         |
| Heterogeneity: Tau*= (           | 0.00; 7,"=             | 3.00, df  | = 6 (P = 0 | 81);/*=    | 0%          |                                      |                                                         |
| Test for overall effect 2        | r = 2.88 (P            | = 0.004   | )          |            |             |                                      |                                                         |
| 1.6.2 Sepsis                     |                        |           |            |            |             |                                      |                                                         |
| Hosny 2013                       | 19                     | 50        | 10         | 25         | 64%         | 0.95 [0.52-1.73]                     | -                                                       |
| Pontes-Arruda 2011               | 15                     | 57        | 16         | 58         | 62%         | 0.95 [0.52-1.74]                     | <u>+</u>                                                |
| Subtotal (95% CI)                |                        | 107       |            | 83         | 12.6%       | 0.95 [0.62-1.45]                     | •                                                       |
| Total events                     | 34                     |           | 26         |            |             |                                      |                                                         |
| Heterogeneity: Tau*= (           | 0.00; X <sup>*</sup> = | 0.00, df  | = 1 (P = 0 | .99); /* = | 0%          |                                      |                                                         |
| Test for overall effect 2        | C= 0.23 (P)            | = 0.82)   |            |            |             |                                      |                                                         |
| 1.6.3 Trauma                     |                        |           |            |            |             |                                      |                                                         |
| Kagan 2015                       | 8                      | 62        | 5          | 58         | 20%         | 1.50 [0.52-4.31]                     |                                                         |
| Subtotal (95% CI)                |                        | 62        |            | 58         | 2.0%        | 1.50 [0.52-4.31]                     | -                                                       |
| Total events                     |                        |           | 5          |            |             |                                      |                                                         |
| Heterogeneity: Not app           |                        |           |            |            |             |                                      |                                                         |
| Test for overall effect 2        | c= 0.75 (P)            | = 0.46)   |            |            |             |                                      |                                                         |
| 1.6.4 General ICU                |                        |           |            |            |             |                                      |                                                         |
| kieft 2005                       | 93                     | 302       | 82         | 295        | 335%        | 1.11 [0.86-1.42]                     | +                                                       |
| Mesejo 2015                      | 11                     | 52        | 23         | 105        | 56%         | 0.97 [0.51-1.83]                     | -                                                       |
| van Zanten 2014                  | 31                     | 152       | 25         | 149        | 9.9%        | 1.22 [0.76-1.96]                     | +                                                       |
| Subtotal (95% CI)                |                        | 506       |            | 549        | 49.0%       | 1.11[0.90-1.37]                      | •                                                       |
| Total events                     | 135                    |           | 130        |            |             |                                      |                                                         |
| Heterogeneity: Tau*= (           | 0.00; χ*=              | 0.32, df  | = 2 (P = 0 | 85); P=    | 0%          |                                      |                                                         |
| Test for overall effect 2        |                        |           |            |            |             |                                      |                                                         |
|                                  |                        | 995       |            | 1028       | 100.0%      | 0.92 [0.79-1.08]                     | •                                                       |
| Total (95% CI)                   |                        |           | 268        |            |             |                                      |                                                         |
| Total (95% CI)<br>Total events   | 249                    |           | 200        |            |             |                                      |                                                         |
| e a construction and             |                        | 12.24, 6  |            | 0.43);/    | *= 2%       |                                      | has at the said                                         |
| Total events                     | 0.00; χ <sup>#</sup> = |           |            | 0.43);/    | *= 2%       |                                      | 0.01 0.1 1 10 100<br>Favors (Fish oil) Favors (control) |

### 28-day mortality: Benefit in ARDS, not in sepsis, trauma and general ICU populations

Ziekenhuis Gelderse Vallei

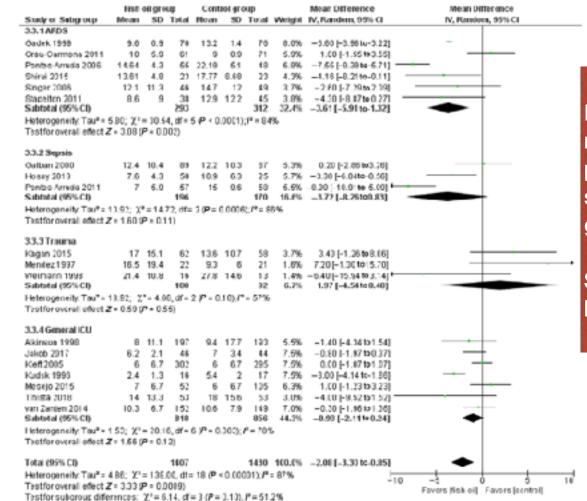
Koekkoek K, Panteleon V, van Zanten AR. Nutrition 2019;59:56-68

This content may not be amended, modified or commercially exploited without prior written consent

|      | New T |
|------|-------|
| 5.15 | 1     |
|      |       |
| -    |       |
|      |       |

|                                                               | Fit        | sh Oil     |           | C          | ontrol |          |              | Mean Difference                                | Mean Difference                                      |                                 |
|---------------------------------------------------------------|------------|------------|-----------|------------|--------|----------|--------------|------------------------------------------------|------------------------------------------------------|---------------------------------|
| Study or Subgroup                                             | Mean       | SE         | Total     | Mean       | - SD   | Tetal    | Weight       | IV, Fandom, 35% CI                             | IV, Random, 95% CI                                   | _                               |
| 2.1.1AFD5                                                     |            |            |           |            |        |          |              |                                                |                                                      |                                 |
| Elamin 2012                                                   | 12.0       | 0          | 9         | 17.5       | 0      |          | _            | Not estimable                                  |                                                      |                                 |
| Osdek 1999                                                    | 11         | 0.8        | 70        | 14.8       | 1.3    | 72       | 9.4%         | -3.40 [-4.17 kz -3.43]                         |                                                      |                                 |
| O au-Carmona 2011                                             | 16         | 10.4       | ¢1        | 18         | 14.8   | 71       | 3.3%         | -200[-6.320+2.33]                              |                                                      |                                 |
| Perists 2014<br>Ponto - Arrede 2006                           | 15<br>17.2 | 3.5        | 29<br>55  | 15.6       | 4.3    | 21<br>40 | 7.2%         | -0.60[-2.62to1.43]<br>-6.20[-7.30te-4.57]      |                                                      |                                 |
| Chirei 2015                                                   | 12.65      |            | 23        |            |        | 21       |              | -0.17 [-15.11 to -1.20]                        |                                                      |                                 |
| Singer 2008                                                   |            | 11.0       |           | 16.6       | 41.0   | 44       |              | -210[-6.05to 2.65]                             |                                                      | ICU LOS:                        |
| Stapelton 2011                                                | 11.0       |            | 41        | 17.4       | 14.8   | 45       |              | -5.50 [-10.30 m-0.20]+                         |                                                      |                                 |
| Sabtotal (95%CI)                                              |            |            | 334       |            |        | 348      |              | -3.71 [-5.40 to -2.02]                         | •                                                    |                                 |
| Heterogeneity Tau <sup>8</sup> = 2                            | 70. X'+    | 21.3       | 6, df = 8 | 6(P=0      | 0025:  | *=729    |              |                                                |                                                      | reduced in                      |
| Testforoverall effect Z                                       | = 4300     | P< 0.0     | 0001)     |            |        |          |              |                                                |                                                      |                                 |
|                                                               |            |            |           |            |        |          |              |                                                |                                                      | general ICl                     |
| 2.1.2 Sepsis                                                  |            |            |           |            |        |          |              |                                                |                                                      | generario                       |
| Galban 2000                                                   |            | 12.6       |           | 16.6       | 12.9   | 87       | 4.5%         | 1.60 [-2.17 to 5.37]                           |                                                      |                                 |
| Hosay 2013<br>Pontes-Arreda 2011                              | 12.6       | 5.2<br>5.9 | 50<br>57  | 13.9<br>13 | 4.2    | 25       | 8.3%<br>6.7% | -1.30 [-3.49 to 0.89]<br>-6.00 [-8.31to -3.69] |                                                      | in sepsis a                     |
| Sebtotal (95%CI)                                              |            | 3.5        | 196       | 15         | 8.7    | 170      | 18,2%        | -209[-6.21102.04]                              |                                                      | the second second second second |
| Heterogeneity Tau* = 1                                        | 1.26.75    | - 14       |           | 2 (P = 1)  | 1 0003 |          |              | -real-or wrad                                  |                                                      | patients                        |
| Testforoverall efect Z                                        |            |            |           |            |        | ×1 - 0   | 010          |                                                |                                                      | patiento                        |
|                                                               |            |            |           |            |        |          |              |                                                |                                                      |                                 |
| 2.1.3 Trauna                                                  |            |            |           |            |        |          |              |                                                |                                                      |                                 |
| Kagen 2015                                                    | 19.5       |            | 62        | 16.4       | 11.0   | 50       | 0.8%         | 0.10 [-1.69 to7.00]                            |                                                      |                                 |
| Monder1997                                                    | 10.0       |            | 22        | 11.1       | 6.7    | 21       | 1.3%         | 7.80 [-1.31 to 15.91]                          |                                                      | Significant                     |
| Weimann 1998                                                  | 28.4       | 23.1       | 16        | 47,4       | 32.8   | 12       |              | -18.10  -37.12 to 5.12]                        |                                                      | orginitearre                    |
| Subtatal (95%/CI)                                             |            |            |           |            |        |          | 5.0%         | 2.53 [-5.41 to 10.43]                          |                                                      | hotorogono                      |
| Hoterogeneity Tou <sup>2</sup> = 3<br>Testforoverall effect Z |            |            |           | 200-0      | 130,7  | = 52%    |              |                                                |                                                      | heterogene                      |
| restloroveral effect 2                                        | = UB30     | M# U.5     | 5.19      |            |        |          |              |                                                |                                                      |                                 |
| 2.1.4 General ICU                                             |            |            |           |            |        |          |              |                                                |                                                      |                                 |
| Akinsos 1998                                                  | 10.5       | 13.1       | 197       | 12.2       | 21.2   | 193      | 4.3%         | -1.70 [-5.45 to2.05]                           |                                                      |                                 |
| Jakob 2017                                                    | 1          | 2.5        | 46        | 10         | 5      | 44       | 7.3%         | -3.00[-4.64te-1.36]                            |                                                      |                                 |
| Keft2005                                                      | 7          | 7.4        | 302       | 8          | 8,1    | 295      | 8.5%         | -1.00 [-2.25to0.25]                            |                                                      | Hospital LC                     |
| Kudisk 1995                                                   | 5.8        | 1.8        | 17        | 8.5        | 2.3    | 18       | 8.3%         | -3.70[-5.06te-2.34]                            |                                                      |                                 |
| Masejo 2015                                                   | 13         | 8.1        | 52        | 11.8       | 8,1    | 105      | 5.3%         | 1.20 [-1.61104.01]                             |                                                      |                                 |
| Thiela 2012                                                   | 26.1       | 14.2       | 20        | 21.2       | 9,1    | 20       | 1.3%         | 4.90 -2.49 to 12.23                            |                                                      | No effect, o                    |
| van Zanten 2014                                               | 23.7       | 22.4       | 152       | 25.6       | 24     | 145      | 3.3%         | -1.90 [-7.15103.35]                            |                                                      |                                 |
| Sebiliztal (95%-CI)                                           |            |            | 780       |            |        | 824      | 39,9%        | -1.40 [-3.15iz-0.04]                           | -                                                    |                                 |
| Heterogeneity Tau* = 2                                        |            |            |           | 0 (P = 0   | 006);  | r=0/9    | •            |                                                |                                                      |                                 |
| Testforoverall effect 2                                       | - 2010     | - 0.0      | PR)       |            |        |          |              |                                                |                                                      |                                 |
| Tetal (06% CI)                                                |            |            | 14.16     |            |        | 1/34     | 100.0%       | -2.33 [-3.34ie-1.12]                           | ▲                                                    |                                 |
| Hoterogeneity Tou? = 3                                        | 40. 21-    | 96.7       |           | 13 (8 - 1  | 0.000  |          |              |                                                |                                                      |                                 |
| Testforoverall effect Z                                       |            |            |           |            |        |          |              | -10                                            | ) -5 0 € 1)<br>⊁avors jexperimentat ravers jeontrolj |                                 |
|                                                               |            |            |           |            |        |          |              |                                                |                                                      |                                 |

Ziekenhuis Gelderse Vallei


ICU LOS: reduced in ARDS and general ICU patients, not in sepsis and trauma patients

Significant statistical neterogeneity

Hospital LOS: No effect, data not show

Koekkoek K, Panteleon V, van Zanten AR. Nutrition 2019;59:56-68





Duration of ventilation: reduced in ARDS patients and not in sepsis, trauma and general ICU patients

Ziekenhuis

Gelderse

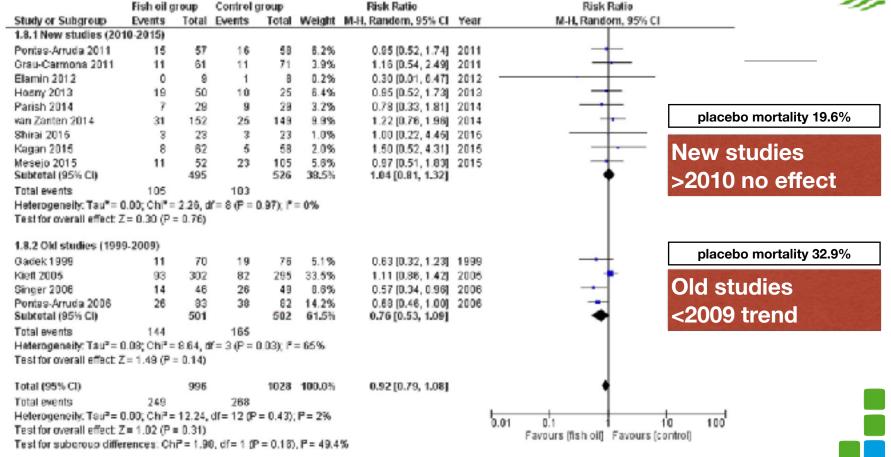
Vallei

Significant statistical heterogeneity

Koekkoek K, Panteleon V, van Zanten AR. Nutrition 2019;59:56-68



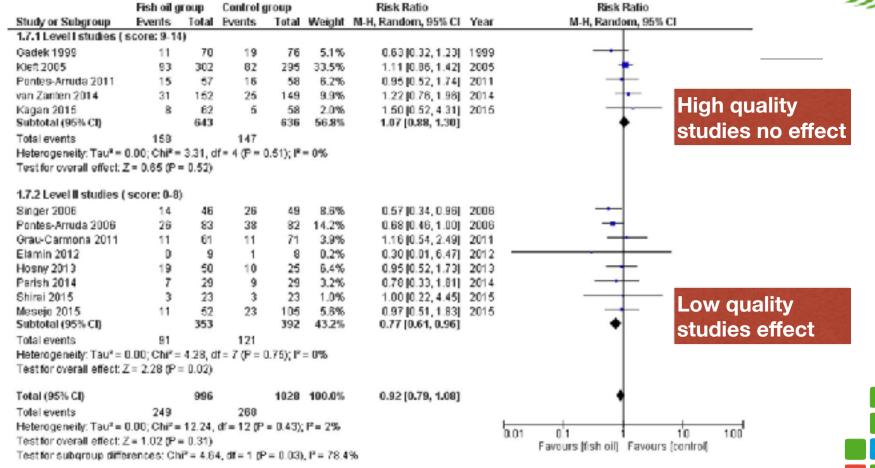



## Enteral fish oil and ICU and hospital mortality

|                                                                                                                                                                 | fibit el gros                         | ap (                               | Contrail gr                       | 100      |                                  | Rink Fatio                                                                       |       | filmik Ratio                       | Finit-olignoup Control Rink-Ratio Finite<br>Study or Industry Texas Texas Texas Texas Wington Milk-Random, Wirk Condom<br>Milk-Random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------|-----------------------------------|----------|----------------------------------|----------------------------------------------------------------------------------|-------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Budg of Balagroup<br>USS & ARES<br>Sabbolal (SSS C)<br>Total words<br>Actorogeneity for ap<br>Decific overall effect<br>USS Secula                              | 0<br>p i cable                        | 0                                  | D                                 | o        | Weight M                         | Randen, 1951 Cl.<br>Notestimate                                                  | Ver   | N-H. Bondwark (693 Cl              | 120.14/105<br>double 1000 11 78 18 75 3.6% 0.62 (#02.1.20) 1890<br>double 1000 11 78 18 75 3.6% 0.62 (#02.1.20) 1890<br>Samuel 2011 9 41 18 4.5 2.7% 1.00 (#0.42, 2.30) 2011<br>Samuel 2010 11 125 4.5% 0.28 (#0.47, 1.32)<br>Table convolution 20 38<br>Finite convolution 20 29 1.00 (#1.40, 21-1) (7= 2.010) (* 2%<br>Testific control what 2 = 0.02 (% = 3.06)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _               |
| nicht wegene<br>Interne 2000<br>albhetal (95% CI)<br>olai eventa<br>Internegeneilig: Natiog<br>end für eventall effect                                          |                                       | 80<br>80<br>(20.0                  | 28<br>26                          | 87<br>87 | 129%<br>1265                     | 0.50 (0.35, 1.00)<br>0.69 (0.35, 1.60)                                           | 2000  | •                                  | 123,25 Septim<br>Subbolal (SSR C2) 0 0 Net extinuable<br>Tata (Print<br>Interrogeneity: Net nooliculatin<br>Teat for overall effect histocalicatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| ASJ Tesuma<br>Jeimann 1998<br>Jähotal (35% CI)<br>Mai events<br>Mangemalik, Natiop                                                                              | î<br>Î                                | 19<br>16                           | 4                                 | 13<br>15 | 1.76<br>1.75                     | 0.41 (0.0%, 1.88)<br>0.41 (0.06, 1.00)                                           | 19983 | -                                  | 123.3 Trauma<br>Satenara (SSS C) & 0 Bet extination<br>Tatal events & 0 & 0<br>Heater generation with applicable<br>Teatric overall effect Net applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |
| estionenen allet<br>1944 General BCU<br>Simon 1938<br>Ret 2005<br>an Zantari 2014<br>abbed 1955 CD<br>obli werks<br>Genegenesty: Taata<br>estifar eremit effect | 80<br>84<br>20<br>194<br>0.005 CMP=0  | 197<br>302<br>152<br>951<br>103, # | 74<br>78<br>29<br>191<br>*=2 (?*= | 437      | 25.2%<br>33.2%<br>15.2%<br>85.0% | 1.05 (0.02, 1.32)<br>1.05 (0.02, 1.32)<br>1.01 (0.04, 1.42)<br>0.05 (0.00, 1.24) | 2995  | •                                  | 1.29.4 General ROJ      Down 1025    23    147    16    122    34%    2.07 (r) 0.2, 4.10 (r) 1995      Atkinson 1960    95    197    65    162    20.9%    1.05 (r) 0.2, 1.39 (r) 1995      Atkinson 1960    95    197    65    162    20.9%    1.05 (r) 0.2, 1.39 (r) 1995      Atkinson 1960    95    197    65    162    20.9%    1.05 (r) 0.2 (r) 1.39 (r) 1995      Atkinson 1960    914    300    152    33    147    10 (r) 0.2 (r) 1.37 (r) 22-1.7%    20.14      Atkinson 1960    15    53    1.5    1.2    1.47 (r) 0.2 (r) 1.3 (r) 1.4 | -               |
| otal (1914 CB)<br>stal eventa<br>disrovensity: Tau' –<br>cotific evenui effect,<br>estifici eutoareap difi                                                      | 210<br>0.01; ChP = 0<br>Z = 0.46 (P = | 0.55)                              |                                   | 0.242 /  |                                  | 0.96 (0.76, 1.98)                                                                | 501   | Forours (Scholl) Forours (control) | Total (82% CI)      962      647      100,05      1.00 (0.98, 1.32)        Table result      305      576      1.00 (0.98, 1.32)      1.00 (0.98, 1.32)        Homosponity      305      576      1.00 (0.98, 1.32)      1.00 (0.98, 1.32)        Homosponity      Table 0.00 (0.98, 4.06, sin 6.99 (0.48); Phil0%      1.00 (0.98, 1.32)      1.01 (0.7 (1.10))        Testation overall effect 2 = 1.20 (2 = 0.23);      Testation overall effect 2 = 1.20 (2 = 0.23);      1.07 (0.7 (1.10))      1.07 (0.7 (1.10))        Testation overall effect 2 = 1.30, eff = 1.07 (0.21); P = 37, 25;      Parentia (accommodel); P.      Parentia (accommodel); P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | noura (sortica) |

### No effect in any subgroup nor combined

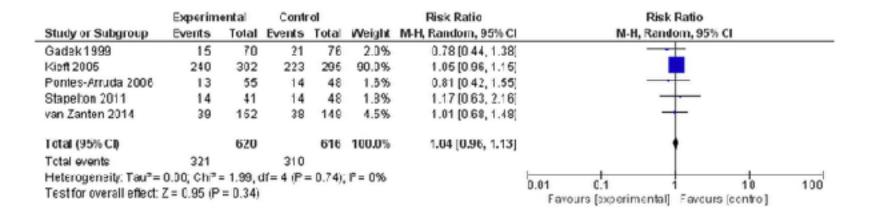
28-day mortality


Ziekenhuis Gelderse Vallei





### 28-day mortality


Ziekenhuis Gelderse Vallei



Koekkoek K, Panteleon V, van Zanten AR. Data Brief. 2018;21:604-615



## Adverse event EN fish oil vs control



### No difference in reported adverse events



Koekkoek K, Panteleon V, van Zanten AR. Data Brief. 2018;21:604-615



## **ASPEN/SCCM 2016 Guidelines enteral fish oil**

- Question: Should EN formulas with fish oils (FOs), borage oil, and antioxidants be used in patients with ALI or ARDS?
- E3. We cannot make a recommendation at this time regarding the routine use of an enteral formulation characterized by an anti-inflammatory lipid profile (eg, omega-3 FOs, borage oil) and antioxidants in patients with ARDS and severe ALI, given conflicting data.
- [Quality of Evidence: Low to Very Low]





## **ESPEN ICU** guideline 2018

### Recommendation 30

High doses of omega-3-enriched EN formula should not be given by bolus administration.

Grade of recommendation: B – strong consensus (91 % agreement)

### **Recommendation 31**

EN enriched with omega-3 FA within nutritional doses can be administered.

Grade of recommendation: 0 – strong consensus (95 % agreement)

**Recommendation 32** 



High doses omega-3 enriched enteral formulas should not be given on a routine basis.

Grade of recommendation: B – consensus (90 % agreement)

Singer P, ...van Zanten AR, ..Bischoff SC et al. Clin Nutr. 2019;38(1):48-79



## What did this meta-analysis learn us?

- Enteral fish oil supplementation cannot be recommended in general
- Signal of mortality reduction in ARDS based on older studies
- Shorter ICU LOS (only) in ARDS and general ICU patients, does not translate into shorter HLOS
- Shorter duration of mechanical ventilation in ARDS (heterogeneity)
- EN fish oil can be considered in ARDS, but effect is small and probably not clinically relevant.

Koekkoek K, Panteleon V, van Zanten AR. Data Brief. 2018;21:604-615





# **Parenteral lipids**







# **Recent meta-analysis EN vs PN**

Elke et al. Critical Care (2016) 20:117 DOI 10.1186/s13054-016-1298-1

Critical Care

#### RESEARCH

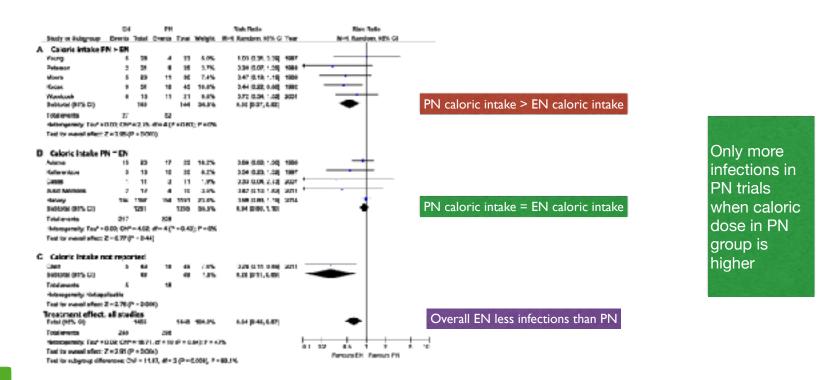
**Open Access** 



Enteral versus parenteral nutrition in critically ill patients: an updated systematic review and meta-analysis of randomized controlled trials

Gunnar Elke<sup>1</sup>, Arthur R. H. van Zanten<sup>2</sup>, Margot Lemieux<sup>3</sup>, Michele McCall<sup>4</sup>, Khursheed N. Jeejeebhoy<sup>5</sup>, Matthias Kott<sup>1</sup>, Xuran Jiang<sup>3</sup>, Andrew G. Day<sup>3</sup> and Daren K. Heyland<sup>3\*</sup>




## **EN versus PN: LOS, duration ventilation**





# Enteral versus parenteral nutrition in critically ill patients: and updated systematic review and meta-analysis of randomized controlled trials











Clinical Nutrition 37 (2018) 1 18

Contents lists available at ScienceDirect



journal homepage: http://www.elsevier.com/locate/clnu



#### Review

Lipids in the intensive care unit: Recommendations from the ESPEN Expert Group\*



Philip C. Calder <sup>a, b, \*</sup>, Michael Adolph <sup>c</sup>, Nicolaas E. Deutz <sup>d</sup>, Teodoro Grau <sup>e</sup>, Jacqueline K. Innes <sup>a</sup>, Stanislaw Klek <sup>f</sup>, Shaul Lev <sup>g</sup>, Konstantin Mayer <sup>h</sup>, Adina T. Michael-Titus <sup>i</sup>, Lorenzo Pradelli <sup>j</sup>, Mark Puder <sup>k</sup>, Hester Vlaardingerbroek <sup>1</sup>, Pierre Singer <sup>g</sup>





# Fatty acids of importance in parenteral nutrition

| Fatty acid            | Shorthand<br>nomenclature | Oil source                           |
|-----------------------|---------------------------|--------------------------------------|
| Caprylic acid         | 8:0                       | Coconut oil or palm kernel oil       |
| Capric acid           | 10:0                      | Coconut oil or palm kernel oil       |
| Lauric acid           | 12:0                      | Coconut oil or palm kernel oil       |
| Myristic acid         | 14:0                      |                                      |
| Palmitic acid         | 16:0                      |                                      |
| Oleic acid            | 18:1n-9                   | Olive oil                            |
| Linoleic acid         | 18:2n-6                   | Vegetable seed oils e.g. soybean oil |
| α-Linolenic acid      | 18:3n-3                   | Vegetable seed oils e.g. soybean oil |
| Eicosapentaenoic acid | 20:5n-3                   | Fish oil                             |
| Docosahexaenoic acid  | 22:6n-3                   | Fish oil                             |





# Typical fatty acid compositions (% of total) of commercially available lipid emulsions for use in parenteral nutrition.

|                       | Intralipid*     | Lipofundin <sup>®</sup><br>MCT/LCT | Structolipid <sup>®</sup> | Omegaven*  | ClinOleic®                 | Lipoplus <sup>®</sup><br>(also known as Lipidem <sup>®</sup> ) | SMOFlipid <sup>®</sup>                                          |
|-----------------------|-----------------|------------------------------------|---------------------------|------------|----------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|
| Oil source            | 100%<br>soybean | 50% MCT + 50%<br>soybean           | 36% MCT + 64%<br>soybean  | 100% fish® | 80% olive + 20%<br>soybean | 50% MCT + 40%<br>soybean + 10% fish <sup>e</sup>               | 30% MCT + 30%<br>soybean + 25%<br>olive + 15% fish <sup>2</sup> |
| SEA                   | 15              | 58                                 | 46                        | 21         | 14                         | 49                                                             | 37                                                              |
| MUFA"                 | 24              | 11                                 | 14                        | 23         | 64                         | 14                                                             | 33                                                              |
| PUFA                  | 61              | 31                                 | 40                        | 56         | 22                         | 37                                                             | 30                                                              |
| n-3 PUFA              | 8               | 4                                  | 5                         | 48         | 3                          | 10                                                             | 7                                                               |
| ALA                   | 8               | 4                                  | 5                         | 1          | 3                          | 1                                                              | 2                                                               |
| EPA                   |                 |                                    |                           | 20         |                            | 3.5                                                            | 3                                                               |
| DHA                   |                 |                                    |                           | 19         |                            | 2.5                                                            | 2                                                               |
| n-6 PUFA <sup>b</sup> | 53              | 27                                 | 35                        | 5          | 19                         | 27                                                             | 23                                                              |

Information taken from [203 205].

SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; ALA, a-linolenic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid.

<sup>a</sup> Mainly oleic acid.

Mainly linoleic acid.

<sup>6</sup> The fatty acid composition of fish oil is more variable than that of vegetable oils so that the precise contribution of different fatty acids may differ in different batches. Note that the fish oil used in Lipolus<sup>®</sup> is more concentrated in EPA and DHA than that used in SMOFLipid<sup>®</sup> so that 10% fish oil in Lipoplus<sup>®</sup> provides more EPA and DHA than 15% fish oil in SMOFLipid<sup>®</sup>.



Typical fatty acid compositions (% of total) of commercially available lipid emulsions for use in parenteral nutrition.

- MCTs and OO appear to be safer and better tolerated than pure SO.
- FO-enriched EN and PN well tolerated and confers clinical benefits, particularly in surgical ICU patients, due to anti-inflammatory and immunemodulating effects.
- FO-enriched nutrition, particularly perioperatively, to reduce complications and ICU LOS and HLOS in surgical ICU patients, and IFALD associated with SO-based LEs.
- Evidence for FO-based nutrition in non-surgical ICU patients is less clear

Ziekenhuis





### **ARTICLE IN PRESS**

Clinical Nutrition xxx (2017) 1-7



Opinion paper

Intravenous fish oil in critically ill and surgical patients - Historical remarks and critical appraisal

K. Georg Kreymann <sup>a</sup>, Daren K. Heyland <sup>b</sup>, Geraldine de Heer <sup>a</sup>, Gunnar Elke <sup>c</sup>

<sup>a</sup> Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Germany

- b Department of Critical Care Medicine. Queen's University. Kingston. Ontario. Canada
- <sup>c</sup> Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Germany





# No exact fish oil doses, product ranges

|                               |             | Omega | ven® 10% | SMOR | <sup>®</sup> 20% | Lipopl | us® 20% |  |
|-------------------------------|-------------|-------|----------|------|------------------|--------|---------|--|
| Soybean oil                   | g/100 ml    |       |          |      | 6                |        | 8       |  |
| Medium-chain<br>triglycerides | g/100 ml    |       |          |      | 6                |        | 10      |  |
| Olive oil                     | g/100 ml    |       |          |      | 5                |        |         |  |
| Fish oil                      | g/100 ml    | 10    |          |      | 3                | 2      |         |  |
|                               |             | Min   | Max      | Min  | Max              | Min    | Max     |  |
| EPA                           | g/100 ml    | 1,25  | 2,82     | 0.20 | 0.70             |        |         |  |
| DHA                           | g/100 ml    | 1,44  | 3.09     | 0.20 | 0.70             |        |         |  |
| Sum                           | g/100 ml    | 2.69  | 5.91     | 0.40 | 1.40             | 0.86   | 1.72    |  |
|                               |             | Min   | Max      | Min  | Max              | Min    | Max     |  |
| EPA                           | (g/10 g FO) | 1,25  | 2,82     | 0,67 | 2,33             |        |         |  |
| DHA                           | (g/10 g FO) | 1,44  | 3,09     | 0,67 | 2,33             |        |         |  |
| Sum                           | (g/10 g FO) | 2.69  | 5.91     | 1.34 | 4.66             | 4.3    | 8.6     |  |



# FO admixtures or FO-supplemented emulsions and infections in surgical patients with malignancies

| Less       |
|------------|
| infections |

|                                        | Experim   |         | Lare   |        |                | NISK Habo                                  |       | KISK KARD                        |
|----------------------------------------|-----------|---------|--------|--------|----------------|--------------------------------------------|-------|----------------------------------|
| Story or Subgroup<br>51.1 Omergroup CT | Erenta    | Fotel   | Creeda | 104    | Weight         | #HI, Random, 95% Cl                        | Teer  | MHI, Random, BOS CE              |
|                                        |           |         |        |        |                |                                            |       |                                  |
| Liang 2008                             | 1         | - 20    | 1      | 1      | 1.1%           | 1.05 (0.07, 15.08)                         | 2008  |                                  |
| Jieng 2010<br>Makin 2711               |           | 100     | 12     | 103    | 5.4%           | 0.34 [0.15, 1.03]                          |       |                                  |
|                                        |           |         | - 1    | - 24   | 8.0%           | D7 [030, 1408]                             |       |                                  |
| 21w2812<br>Ww2814                      |           | 28      |        | 24     | 1,9%           | 年7月1日月1日月1日日<br>1月1日日月1日日日<br>1月1日日日日日日日日日 |       |                                  |
| Subcoal (80% CE)                       |           | 100     |        | 104    | 11.45          | 0.43[0.72, 0.84                            | 208.  | -                                |
| Total events                           | 10        | 160     | 20     | 100    |                | and here and                               |       | -                                |
| Hatarageaalty Tas/ a                   |           | - 2.42  |        | -0.42  | <b>F</b> = 100 |                                            |       |                                  |
| Two for small effect.                  |           |         |        |        |                |                                            |       |                                  |
| AND IN OVER AN PROV                    |           | - 6,414 | ·      |        |                |                                            |       |                                  |
| 5.1.2 Georgenes MCI                    | 1.01      |         |        |        |                |                                            |       |                                  |
| K0+6 2005                              | 0         | 30      | 12     | 24     | 14.1%          | 0.87(0.25,1.20)                            | 300.5 |                                  |
| Man 2212                               | - 6       | 10      | - 6    | 13     | 7,7%           | 0.03 (0.24, 1.05)                          |       |                                  |
| 2142813                                | 1.4       | - 35    | 21     | 34     | 31.15          | 0.84 (0.85, 1.00)                          | 304.3 |                                  |
| Saboold (BAN CT)                       |           | 26      |        | 24     | 81.1%<br>51.94 | 6.65 (3.44, 6.95)                          |       | •                                |
| coat events                            | 28        |         | 39     |        |                |                                            |       |                                  |
| Helerogeneit: Test -                   | 0.00, 057 | -081,   | 8-28-  | - 0.90 | P-15           |                                            |       |                                  |
| Test for overall effect                | 3+1288    | 10.03   |        |        |                |                                            |       |                                  |
| 5.1.3 Omeganes Circ                    |           |         |        |        |                |                                            |       |                                  |
|                                        |           |         |        |        |                |                                            |       |                                  |
| Bable Tahui 2010<br>Cubicod (05%, CE   | 3         | 13      | 11     | - 14   | 125            | 0.25 (0.10, 0.02)<br>0.20 (0.40, 0.02)     | 2010  |                                  |
| Total events                           |           | -       | 11     |        | 1.015          | area for and a read                        |       |                                  |
| Heinrogeneit, Notau                    |           |         |        |        |                |                                            |       |                                  |
| Teal for one ull effect                |           | - 1.13  |        |        |                |                                            |       |                                  |
|                                        |           |         |        |        |                |                                            |       |                                  |
| 6.1.4 SINCE                            |           |         |        |        |                |                                            |       |                                  |
| We 1016                                | 1         | - 30    | - 1    | 24     | 1.1%           | 104017,1490                                | 2014  |                                  |
| Jakoosi (80% CE)                       |           | 20      |        | 24     | 1.1%           | 1.00 (0.07, 04.00)                         |       |                                  |
| Total events                           | 1         |         | 1      |        |                |                                            |       |                                  |
| Heterogenety: Heteo                    | diciple   |         |        |        |                |                                            |       |                                  |
| Test for one all effect.               | 2-6400    | -1.40   |        |        |                |                                            |       |                                  |
|                                        |           |         |        |        |                |                                            |       |                                  |
| 3.1.3 Elpoptes                         |           |         |        |        |                |                                            |       |                                  |
| Wudder 1997                            | 2         | 19      | - 6    | 2      | 0.9%           | 0.07 (0.06, 1.04)                          | 1997  |                                  |
| Serval 2007                            | 4         | 10      | *      | 2      | 6.1%           |                                            | 3001  |                                  |
| Walewann 390P                          |           | 127     | 10     | 121    | 7.4%           | 0.0101.010,1144                            | 3001  |                                  |
| Wing2012                               | 2         | 32      |        | 2      | 3.9%           | 0.72(0.16, 2.96)                           | 2012  |                                  |
| Sabutual (Rom Ca)                      |           | 197     |        | 202    | 21.35          | 0.05 [0.30, 1.81]                          |       | •                                |
| Total events                           | 14        |         | 21     |        |                |                                            |       |                                  |
| Helengeweity: Tau/ a                   |           |         |        | =09I)  | F105           |                                            |       |                                  |
| Test for overall princt.               | 2+1340    | 11.15   | 1      |        |                |                                            |       |                                  |
| Total (1975-Ch                         |           | 265     |        | -      | 100.25         | 9.03(9.42, 9.73)                           |       | •                                |
| Total events                           | SP        | 100     | 105    | 200    | 100.07         | 400 IV46 47 0                              |       | •                                |
| Metarogenality Tauf -                  |           | - 8.87  |        |        | 1.11.174       |                                            |       |                                  |
| Tesi for one all pfleyi.               |           |         |        |        | N 84 198       |                                            |       | ຽດ2 ບຳ 1 ກັ 50                   |
| Test for evilageous silf               |           |         |        | e = 3  | £40, F=0       | 94                                         |       | Fareurs Omega 3 Fareurs existent |


Product specific metaanalysis did not reveal any differences between the products, neither in infections rates nor in ICU or hospital length of stay. Ziekenhuis Gelderse

# FO admixtures or FO-supplemented emulsions on infection rates in critically ill patients.



Slight reduction in infections

|                                     | Omeg      | a 3     | Contr      | ici.        |            | RICK Rabo           | Rick Ratio                      |
|-------------------------------------|-----------|---------|------------|-------------|------------|---------------------|---------------------------------|
| Study or Subgroup                   | Events    | Total   | Events     | 1ctal       | Weight     | M-H, Random, 96% Cl | M-H, Random, E6% Ci             |
| 4.3.1 Omegaven LCT                  |           |         |            |             |            |                     |                                 |
| Wor'g 2009                          | 6         | 28      | 9          | 28          | 13.5%      | 0.67 (0.27, 1.62)   |                                 |
| Subiolal (95% CI)                   |           | 28      |            | 28          | 18.5%      | 0.67 [0.27, 1.62]   | -                               |
| Total events                        | 6         |         | 9          |             |            |                     |                                 |
| Helerogeneity: Not app              | licable   |         |            |             |            |                     |                                 |
| Test for overall effect 2           | = 0 89 (P | = 1.37  | )          |             |            |                     |                                 |
| 4.3.2 Omegaven MCM                  | UCT .     |         |            |             |            |                     |                                 |
| Friedocke 2008                      | 11        | 83      | 12         | 82          | 25.5%      | 0.91 (0.42, 1.93)   |                                 |
| Subiolal (95% CI)                   |           | 83      |            | 82          | 25.5%      | 0.91 [0.42, 1.93]   | -                               |
| Total events                        | 11        |         | 12         |             |            |                     |                                 |
| Helerogeneity: Not app              | licable   |         |            |             |            |                     |                                 |
| Test for overall effect Z           | = 0 26 (P | = 0.80  | 0          |             |            |                     |                                 |
| 4.3.3 Lipopius                      |           |         |            |             |            |                     |                                 |
| Graw Cermona 2014                   | 17        | 81      | 29         | 78          | 65.0%      | 0.58 0.34, 0.94     |                                 |
| Sabiolai (95% Ci)                   |           | 81      |            | 78          | 56.0%      | 0.56 [0.34, 0.94]   | +                               |
| Total events                        | 17        |         | 29         |             |            |                     |                                 |
| Heteroganeity: Not app              | licable   |         |            |             |            |                     |                                 |
| Test for overall affect 2           | = 219 (P  | = 0.03  | 9          |             |            |                     |                                 |
| Total (05% CI)                      |           | 192     |            | 188         | 100.0%     | 0.66 [0.45, 0.96]   | ◆                               |
| Total events                        | 34        |         | 50         |             |            |                     |                                 |
| Heterogeneity: Tau <sup>2</sup> = 0 | 00; Chi#  | - 1.03, | @=20P      | - 0.63      | P=0%       |                     | 0.02 0.1 10 53                  |
| Test for overall effect 2           | = 215 (P  | = 0.03  | 9          |             |            |                     | Fevours Omaga 3 Fevours control |
| Test for publicioup diffe           | D BOOKS   | hF= 1   | 03. df = 2 | $e^{2} = 0$ | 600. P = 0 | 26                  | evena omege a li erema celli el |





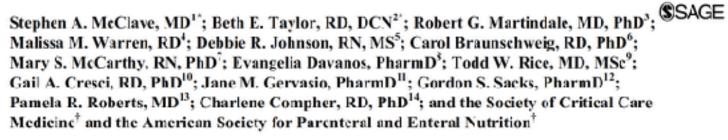
ESPEN Guidelines on Parenteral Nutrition: Intensive care

Pierre Singer", Mette M. Berger<sup>b</sup>, Greet Van den Berghe<sup>e</sup>, Gianni Biolo<sup>d</sup>, Philip Calder<sup>e</sup>, Alastair Forbes<sup>f</sup>, Richard Griffiths<sup>g</sup>, Georg Kreyman<sup>h</sup>, Xavier Leverve<sup>1</sup>, Claude Pichard<sup>1</sup>

- Does the addition of EPA and DHA to lipid emulsions have an effect on inflammatory processes, morbidity or mortality?
- Recommendation: Addition of EPA and DHA to lipid emulsions has demonstrable effects on cell membranes and inflammatory processes (Grade B). Fish oil-enriched lipid emulsions probably decrease length of stay in critically ill patients. (Grade B).

9 years old is it still true?




Ziekenhuis

Gelderse



Clinical Guidelines

### Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically III Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.)





Ziekenhuis Gelderse Vallei

Journal of Parenteral and Enteral Nutrition Volume 40 Number 2 February 2016 159–211 © 2016 American Society for Parenteral and Enteral Nutrition and Society of Critical Case Medicine DOI: 10.1177/0143607115621863 jpen.sagepab.com hosted at online.sagepub.com





# **ASPEN GUIDELINES 2016**

- Question: Should soy-based IV fat emulsions (IVFEs) be provided in the first week of ICU stay? Is there an advantage to using alternative IVFEs (ie, medium-chain triglycerides [MCTs], olive oil [OO], FO, mixture of oils) over traditional soybean oil (SO)–based lipid emulsions in critically ill adult patients?
- H3a. We suggest withholding or limiting SO-based IVFE during the first week following initiation of PN in the critically ill patient to a maximum of 100 g/wk (often divided into 2 doses/wk) if there is concern for essential fatty acid deficiency.
- · [Quality of Evidence: Very Low]
- H3b Alternative IVFEs may provide outcome benefit over soy-based IVFEs; however, we cannot make a recommendation at this time due to lack of availability of these products in the United States. When these alternative IVFEs (SMOF [soybean oil, MCT, olive oil, and fish oil emulsion], MCT, OO, and FO) become available in the United States, based on expert opinion, we suggest that their use be considered in the critically ill patient who is an appropriate candidate for PN.



### **Recommendation 24**

The administration of intravenous lipid emulsions should be generally a part of PN. Grade of recommendation: GPP- strong consensus (100 % agreement)

### **Recommendation 25**

Intravenous lipid (including non-nutritional lipid sources) should not exceed 1.5 g lipids / kg /day and should be adapted to individual tolerance. Grade of recommendation: GPP – strong consensus (100% agreement)

### **Recommendation 33**

Parenteral lipid emulsions enriched with EPA + DHA (Fish oil dose 0.1-0.2 g/kg/ d) can be provided in patients receiving PN.

Grade of recommendation: 0 – strong consensus (100 % agreement)



### Conclusions

- Timing of energy, protein and probably lipids is important during critical illness, do not overfeed
- No relevant benefit of enteral fish oil supplementation, earlier effect came from older low-quality studies and even recent large studies show harm of enteral fish oil
- · IV Omega-6 lipids (and propofol high/long) should be avoided
- Fish-oil as IVLE is beneficial in perioperative surgical patients, less evidence in other critically ill patients, no clear difference in outcome of various products
- FO confers immune-depressant effects, consider whether you want that
- Olive-oil based lipids confer most immune-neutral profile, can be used in various conditions.

