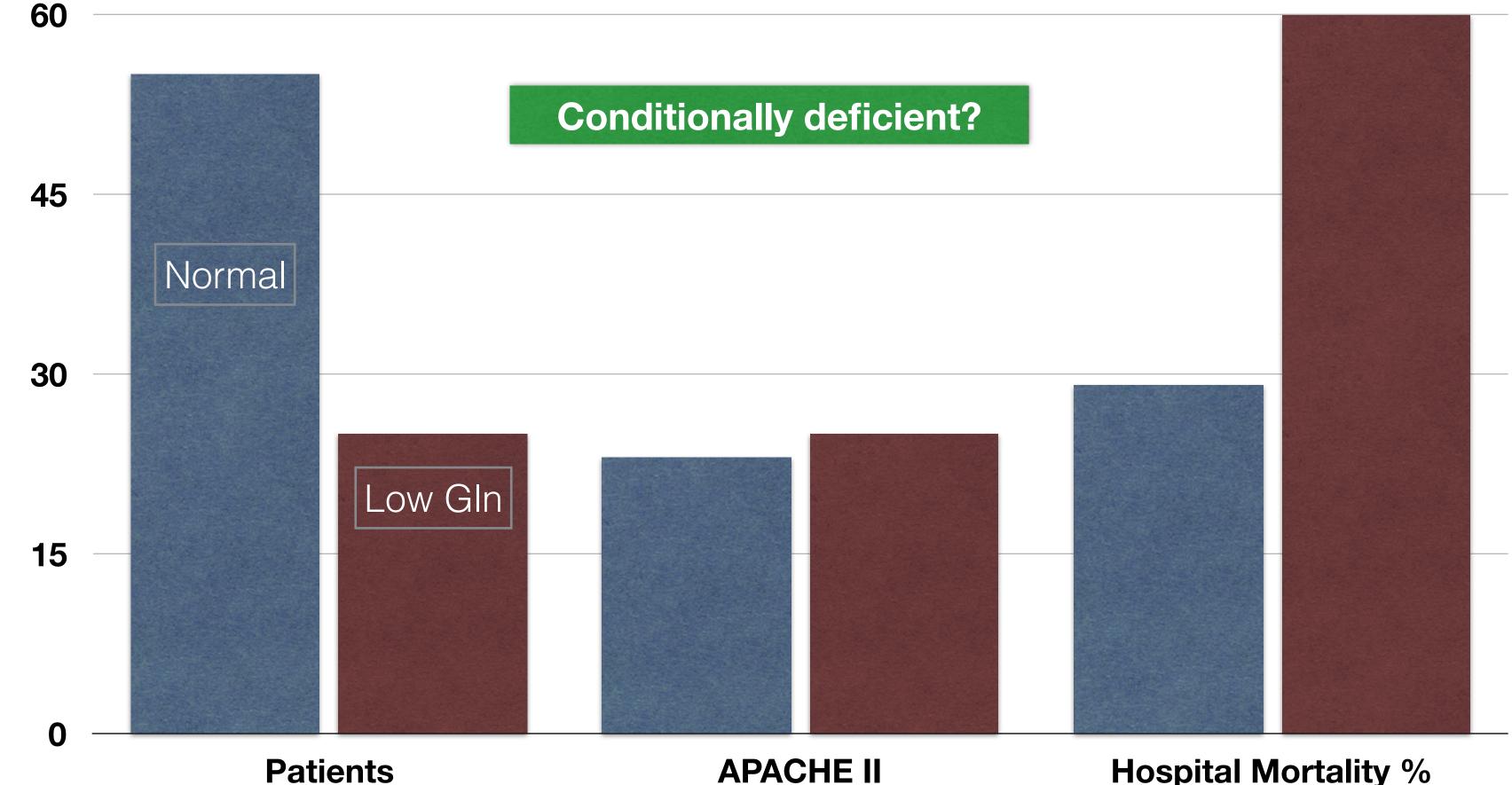
### Is the hypothesis on glutamine deficiency still valid?

#### Arthur R.H. van Zanten, MD PhD



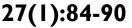

Internist-intensivist Medical Manager Care Division **Gelderse Vallei Hospital Ede, The Netherlands** E-mail: zantena@zgv.nl www.criticalcarenutrition.nl



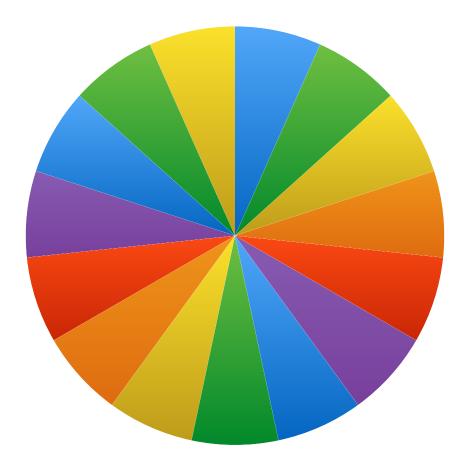


#### **Mortality & baseline** glutamine plasma levels < 420 mcmol/l



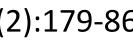



**APACHE II** 

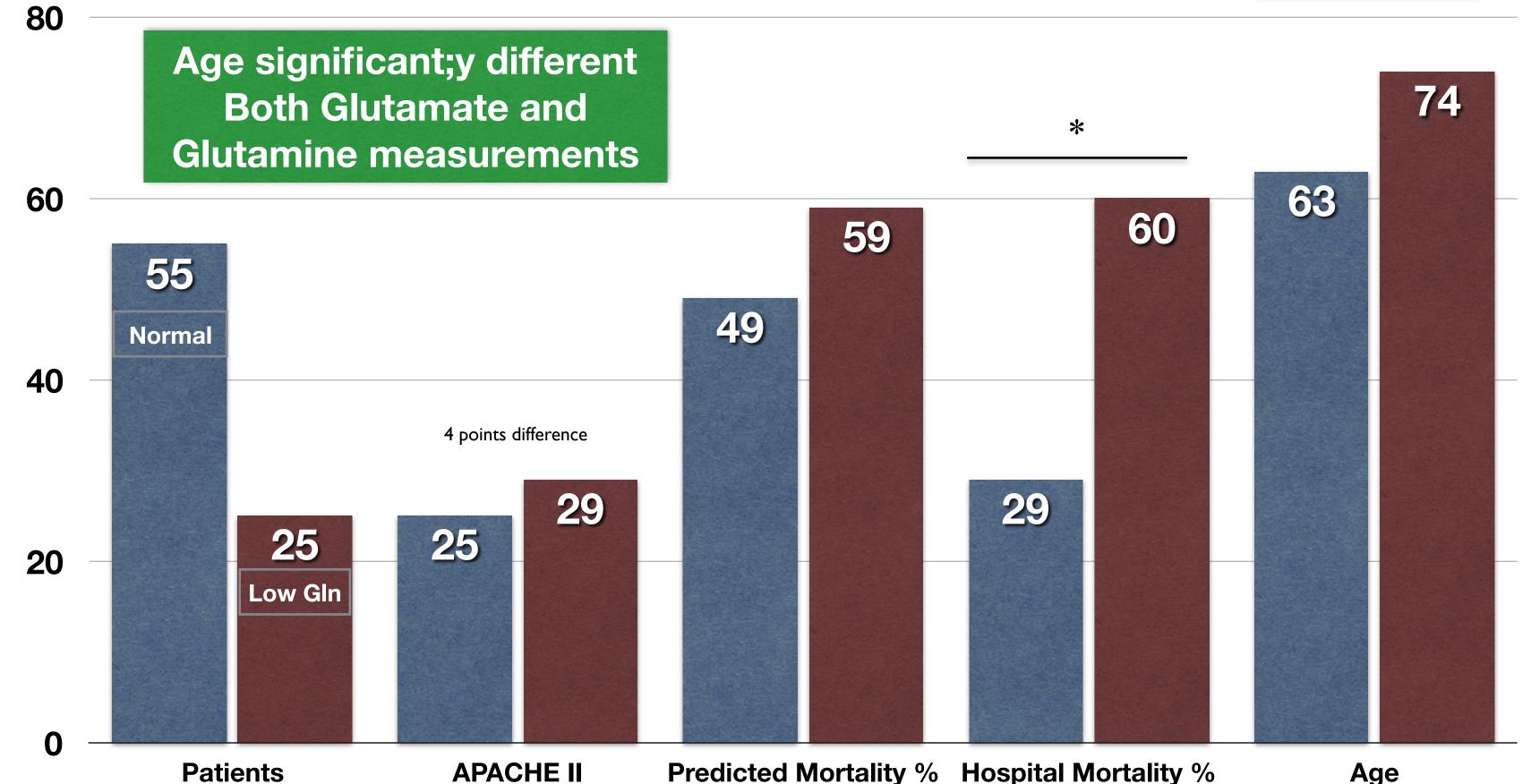

#### **Hospital Mortality %**

\*

Oudemans-van Straaten HM Intensive Care Med. 2001; 27(1):84-90




### 15 reasons to doubt the glutamine deficiency hypothesis





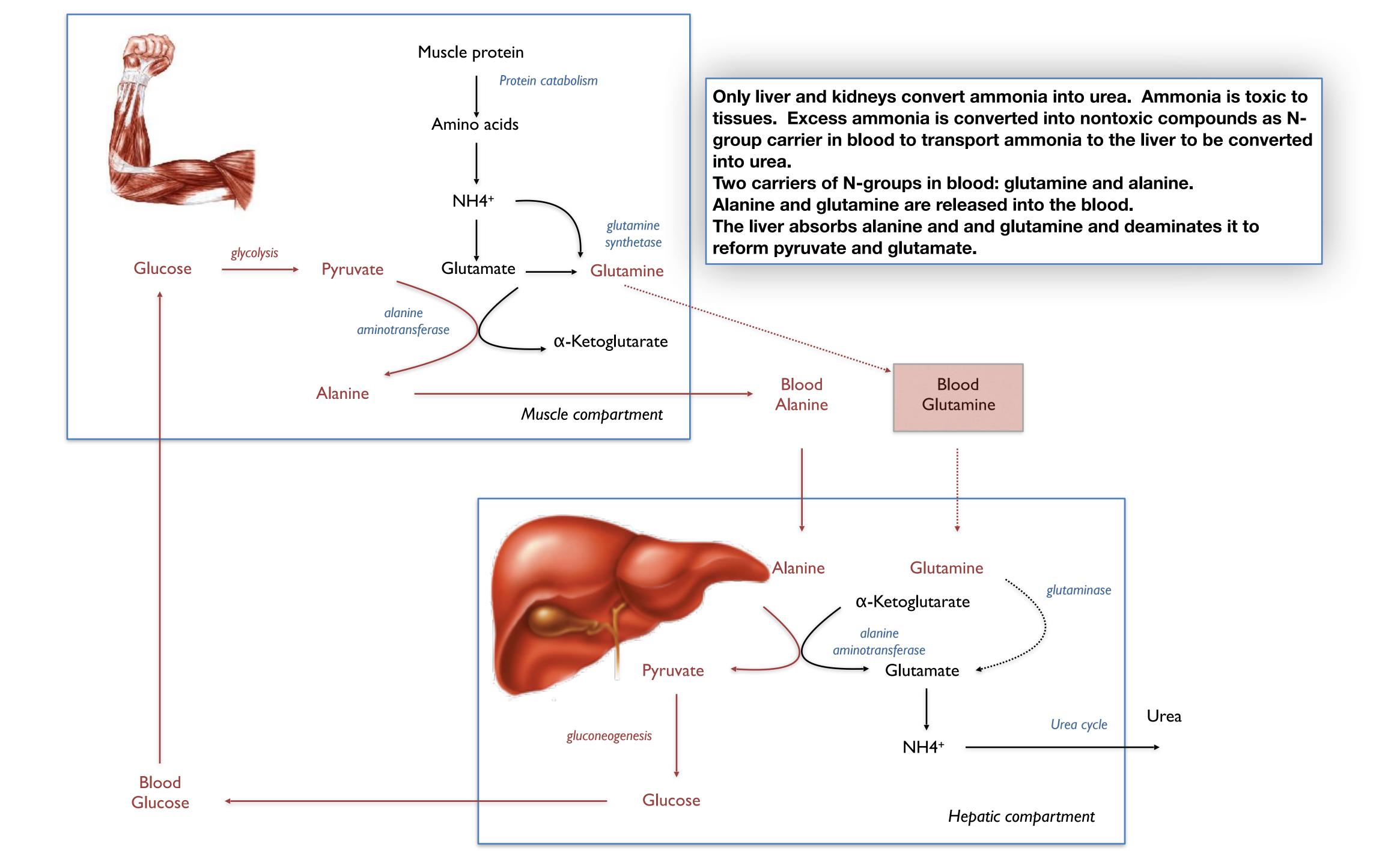

**Too simple concept** Low plasma levels are inconsistent **Sometimes high baseline levels** No correlation disease severity Supplementation: no reduction endogenous production **RCTs show harm** High baseline glutamine associated with harm **Conversion to citrulline and arginine** No benefits in meta-analyses High-discharge glutamine associated with 1-year mortality Interaction with renal function Larger increase from baseline higher mortality **Benefits only from older trials Benefits only from single center trials** Low baseline associated with lower mortality

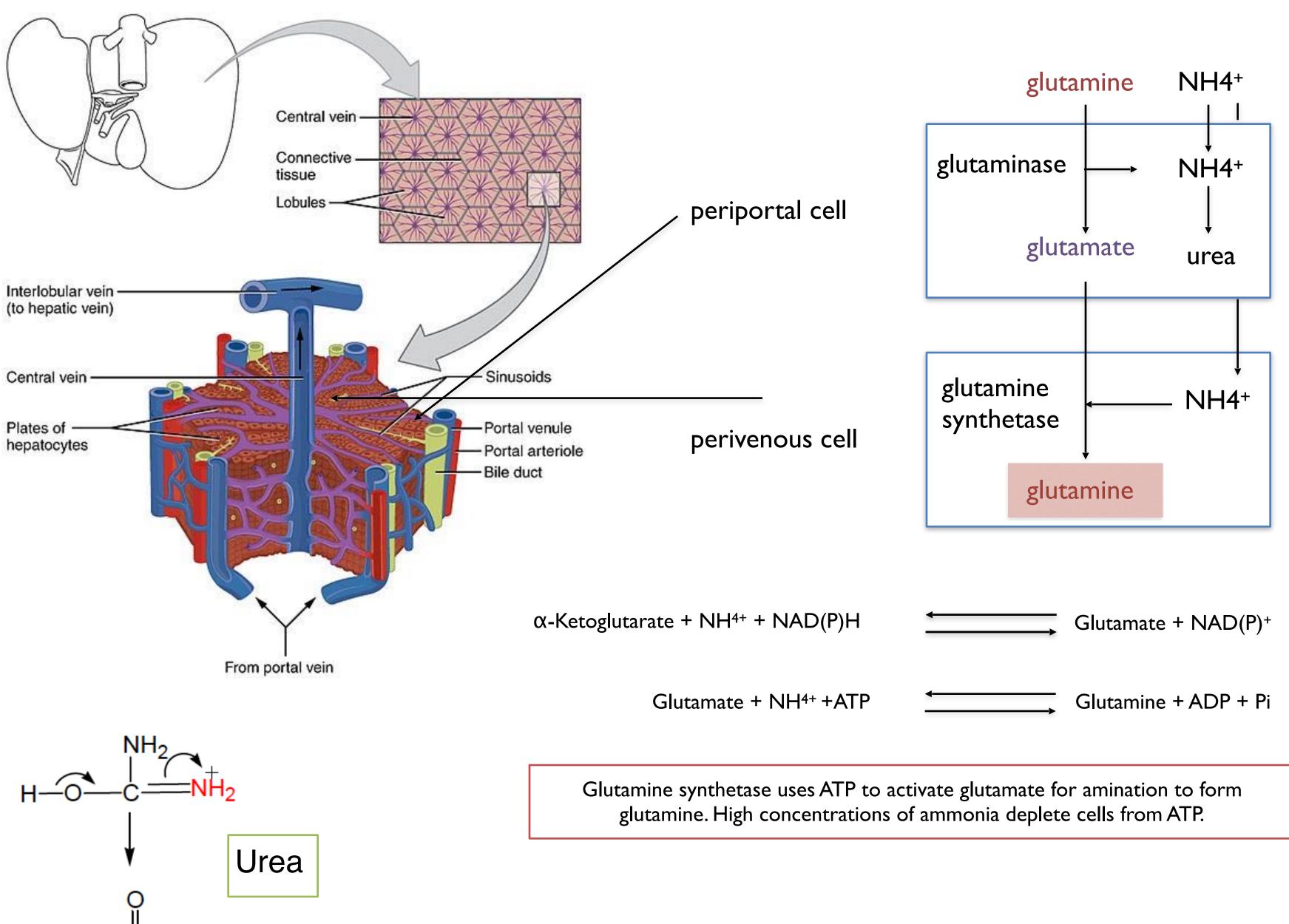


#### **Mortality & baseline** glutamine plasma levels < 420 mcmol/l



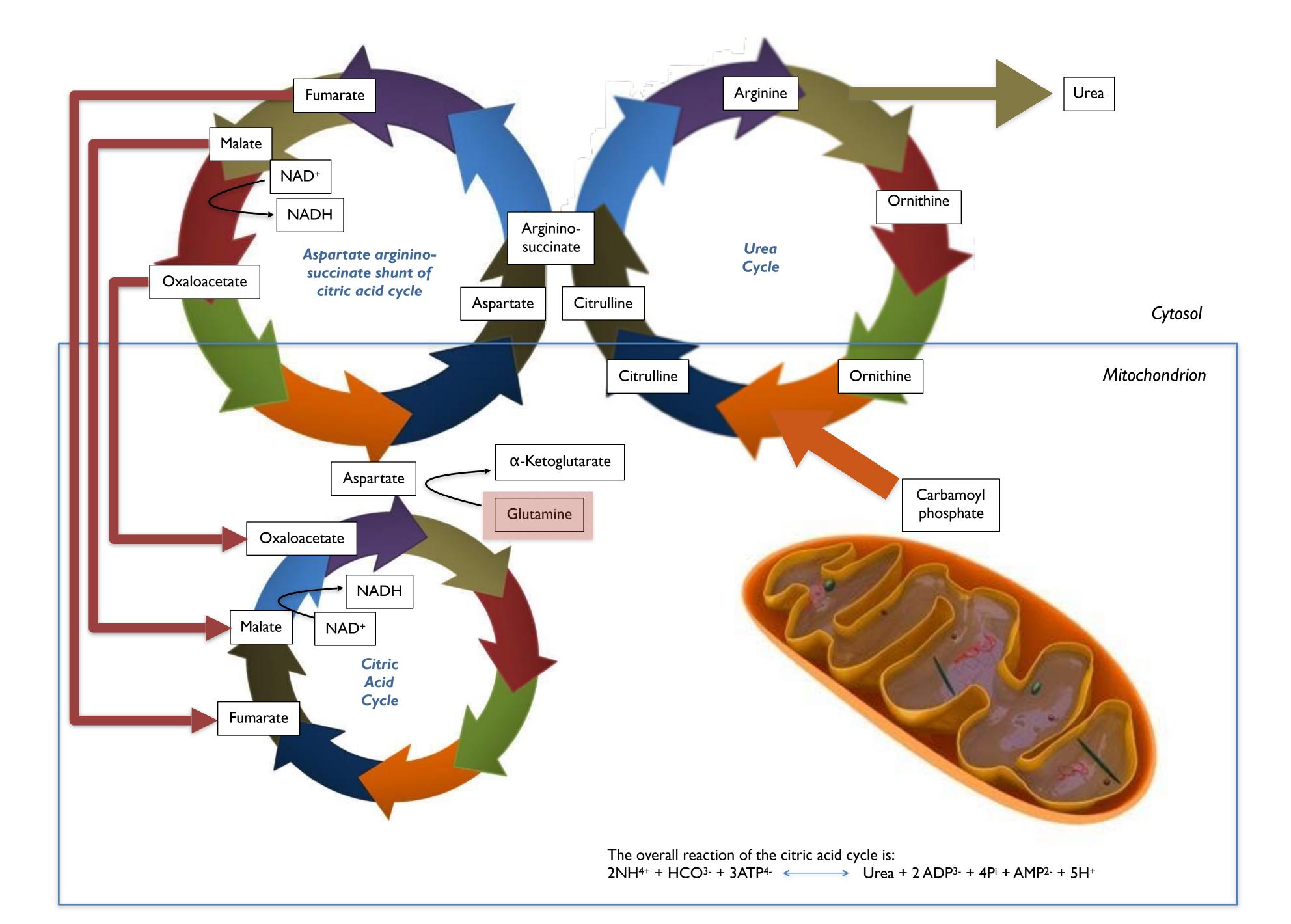
**Predicted Mortality % Hospital Mortality %** 


Age


\*












 $H_2N$ — $\ddot{C}$ — $NH_2$ 



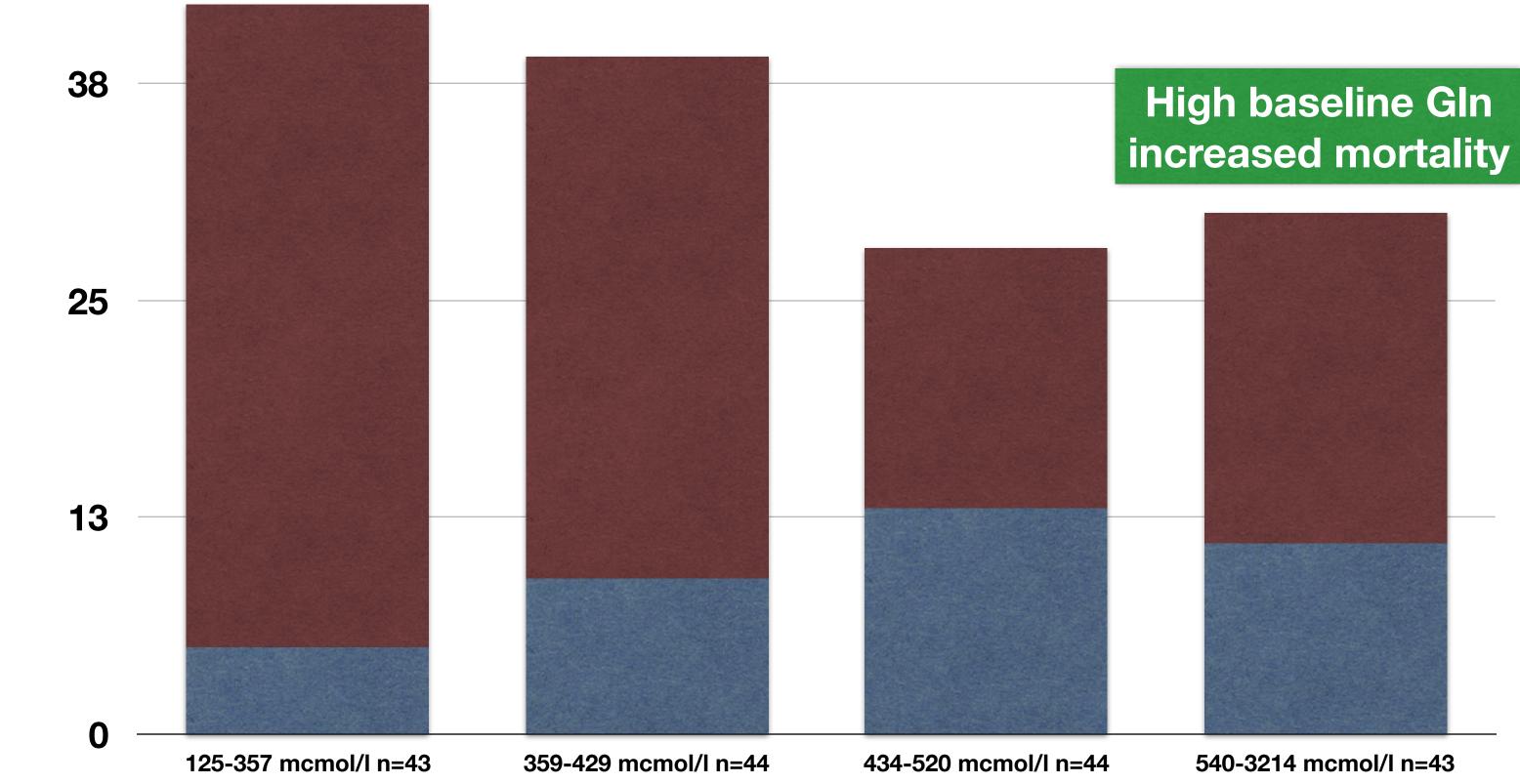




### Low baseline Gln inconsistent

- in clinical and experimental trials

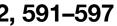



#### Large variations in numbers of ICU patients with low baseline plasma glutamine

#### · Varying from 0% to 75% of patients with baseline plasma Gln of < 420 mcmol/l

Wernerman J, et al. Acta Anaesth Scand. 2011; 55:812-8. Heyland D, et al. N Engl J Med 2013; 368:1489-1497. Van Zanten AR, et al. JAMA 2014; 312:514-524.22. Berg A, et al. Amino Acids 2005; 29:221-228. Berg A et al. Intensive Care Med 2006; 32:1741-6. Carroll PV et al. Am J Physiol Endocrinol Metab 2004; 286:E151-157. Engel JM, et al. Acta Anaesthesiol Scand 2003; 47:707-713. Hirose T, et al. Clin Nutr 2014; 33:179-182. Iresjö BM, et al. JPEN J Parenter Enteral Nutr 2006; 30:277-285. Luo M, et al. Clin Nutr 2008; 27:297-306. Palmer TE, et al. Nutrition 1996; 12:316-320. Rodas PC, et al. Clin Sci (Lond) 2012; 122:591-597. Tjäder I, et al. Intensive Care Med 2004; 30:266-275. Vesali RF, et al. Clin Nutr 2002; 21:505-514. Pérez-Bárcena J, et al. Crit Care 2010; 14:R233.

#### **GIN baseline levels** 6-months mortality U-shape? 50


n=174

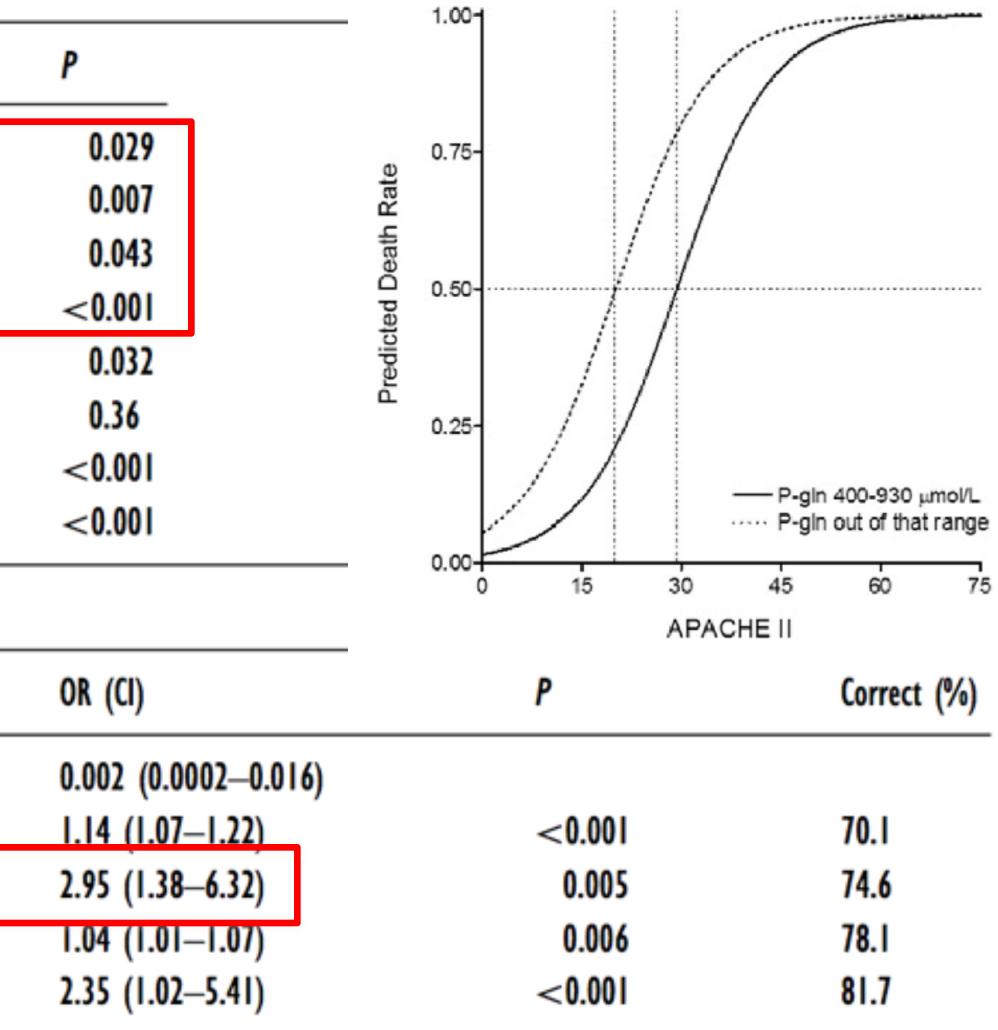








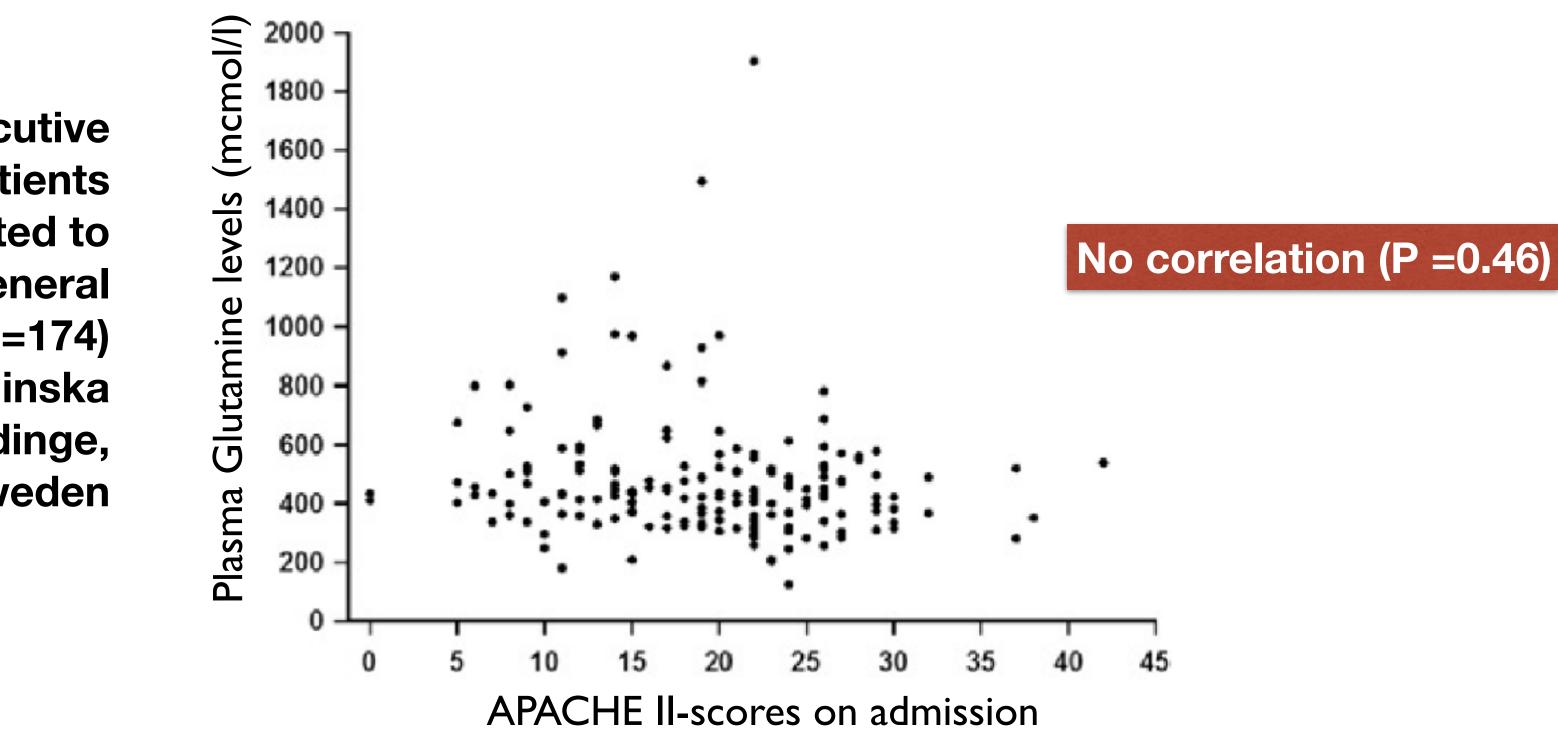



#### (a) Univariate analysis

|                    | OR (CI)            |
|--------------------|--------------------|
| Gln<420            | 2.02 (1.07-3.80)   |
| Gln<400            | 2.41 (1.26-4.59)   |
| Gln>930            | 4.11 (0.99 - 17.1) |
| Gln<400 or >930    | 3.22 (1.68-6.16)   |
| rGSH/tGSH>0.65     | 2.17 (1.07-4.40)   |
| Gender (male)      | 1.35 (0.71-2.57)   |
| APACHE (per point) | 1.14 (1.09–1.21)   |
| Age (per year)     | 1.06 (1.03-1.08)   |

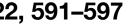
(b) Stepwise multiple logistic regression analysis

|                      | β             |  |
|----------------------|---------------|--|
| Intercept            | — <b>6.43</b> |  |
| APACHE (per patient) | 0.13          |  |
| Gln <400 or >930     | 1.08          |  |
| Age (per year)       | 0.04          |  |
| rGSH/tGSH >0.65      | 0.85          |  |
|                      |               |  |

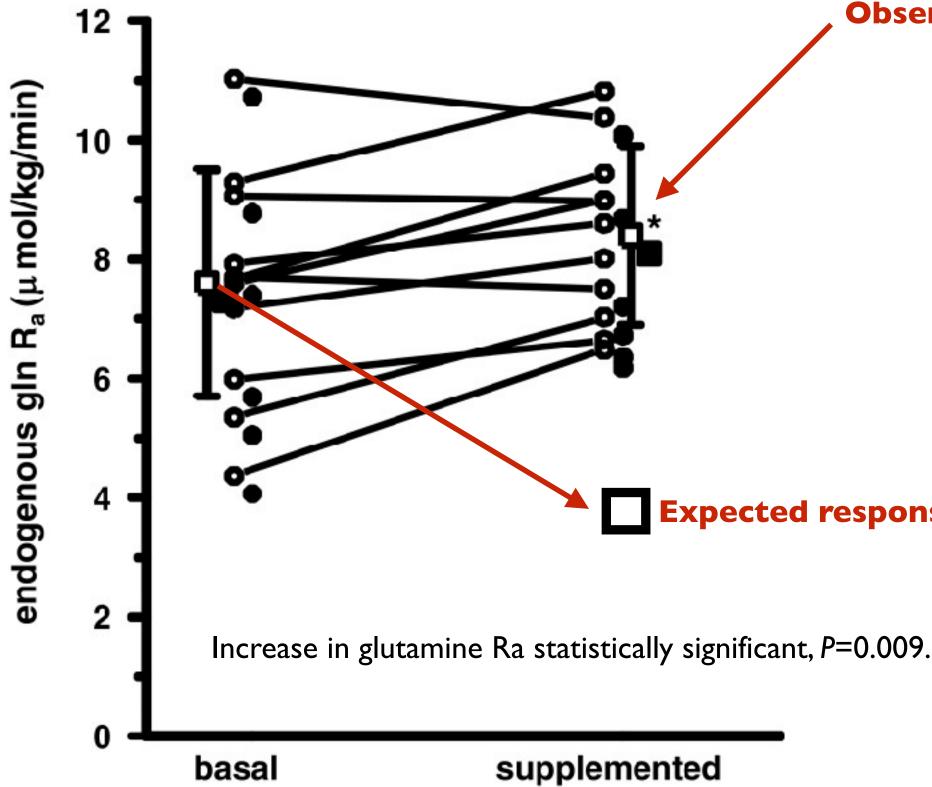







### No correlation baseline plasma **GIn with severity of illness**




Consecutive patients admitted to the general ICU (n =174) at Karolinska Huddinge, Sweden



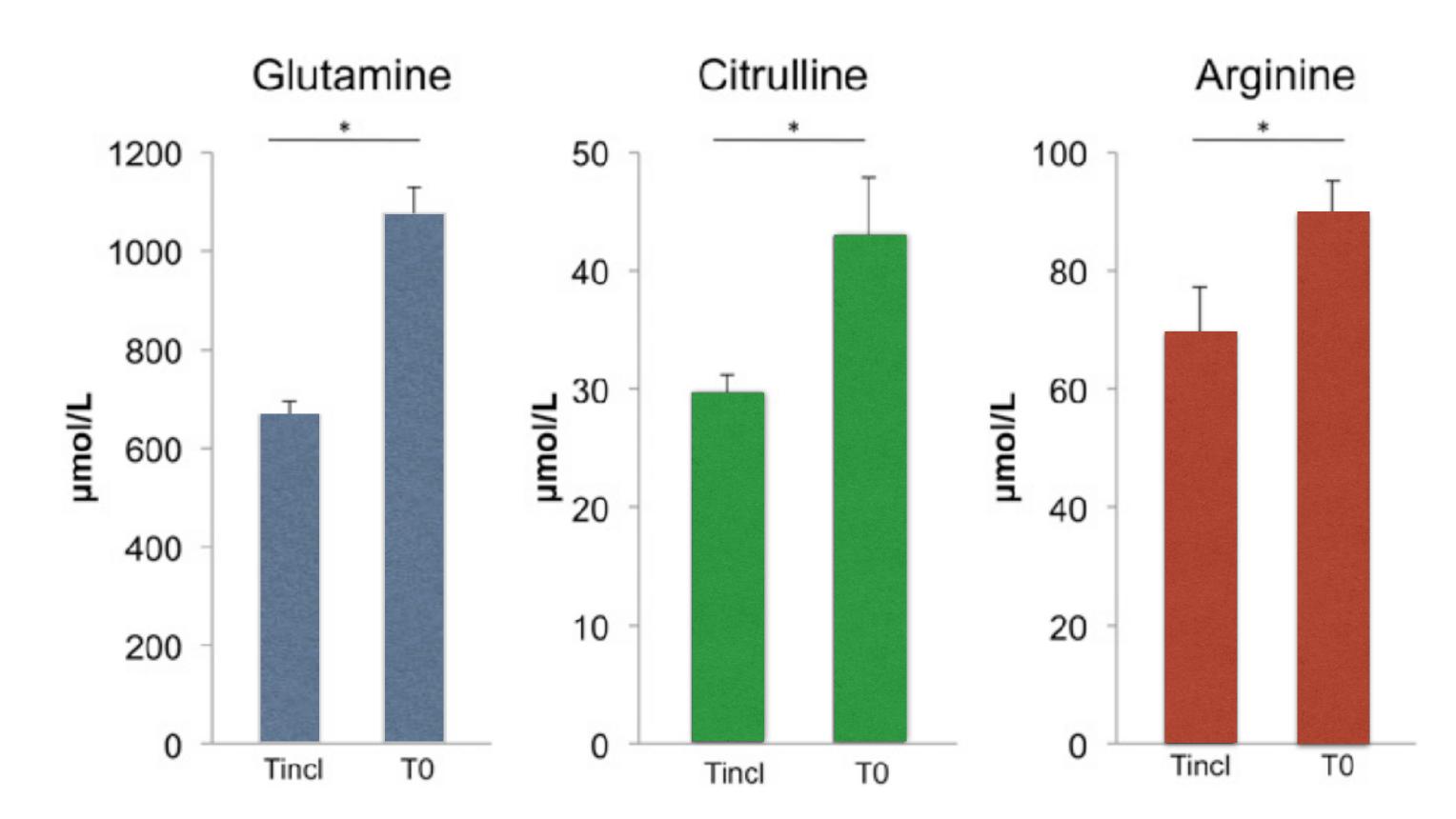


#### **Exogenous glutamine** supplementation and endogenous glutamine production





#### **Observed response**


**Expected response** 

The hypothesized attenuation of endogenous glutamine production during L-alanyl-Lglutamine infusion given as a part of full nutrition was not seen.

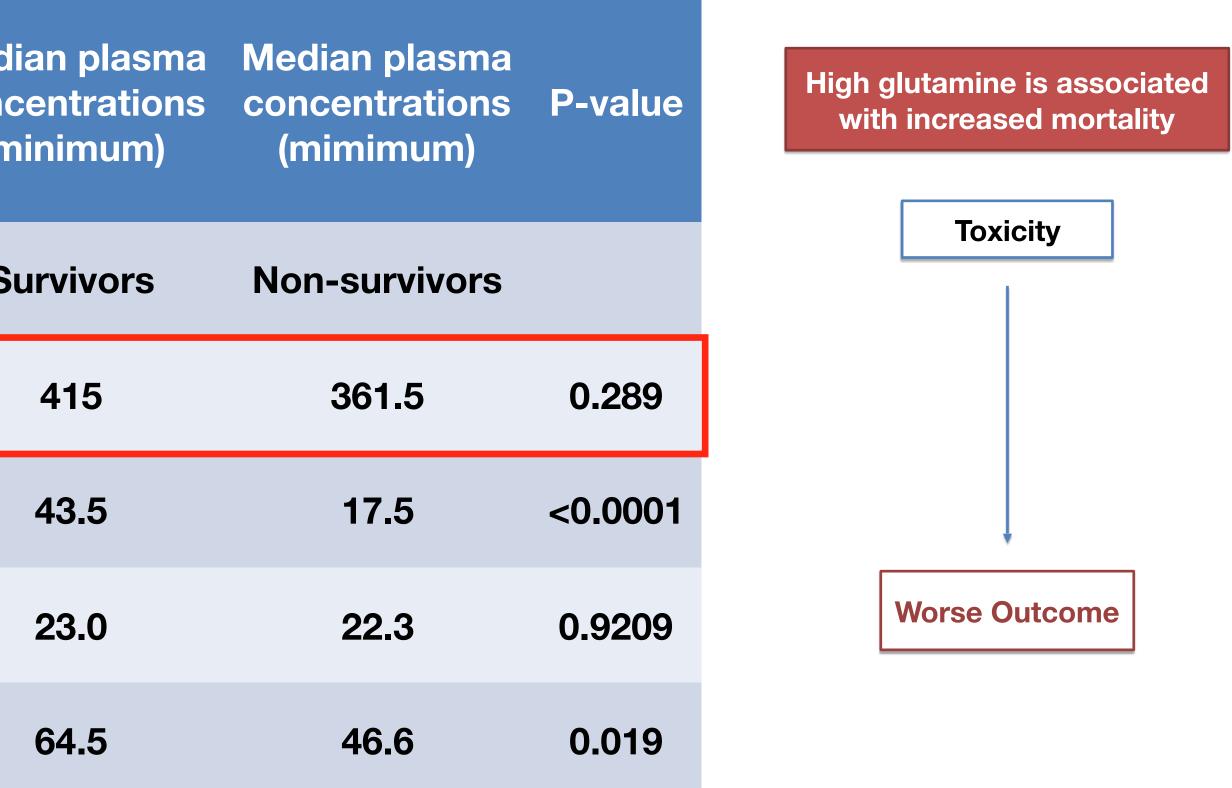
seen.

Mori M. Critical Care 2014, 18:R72

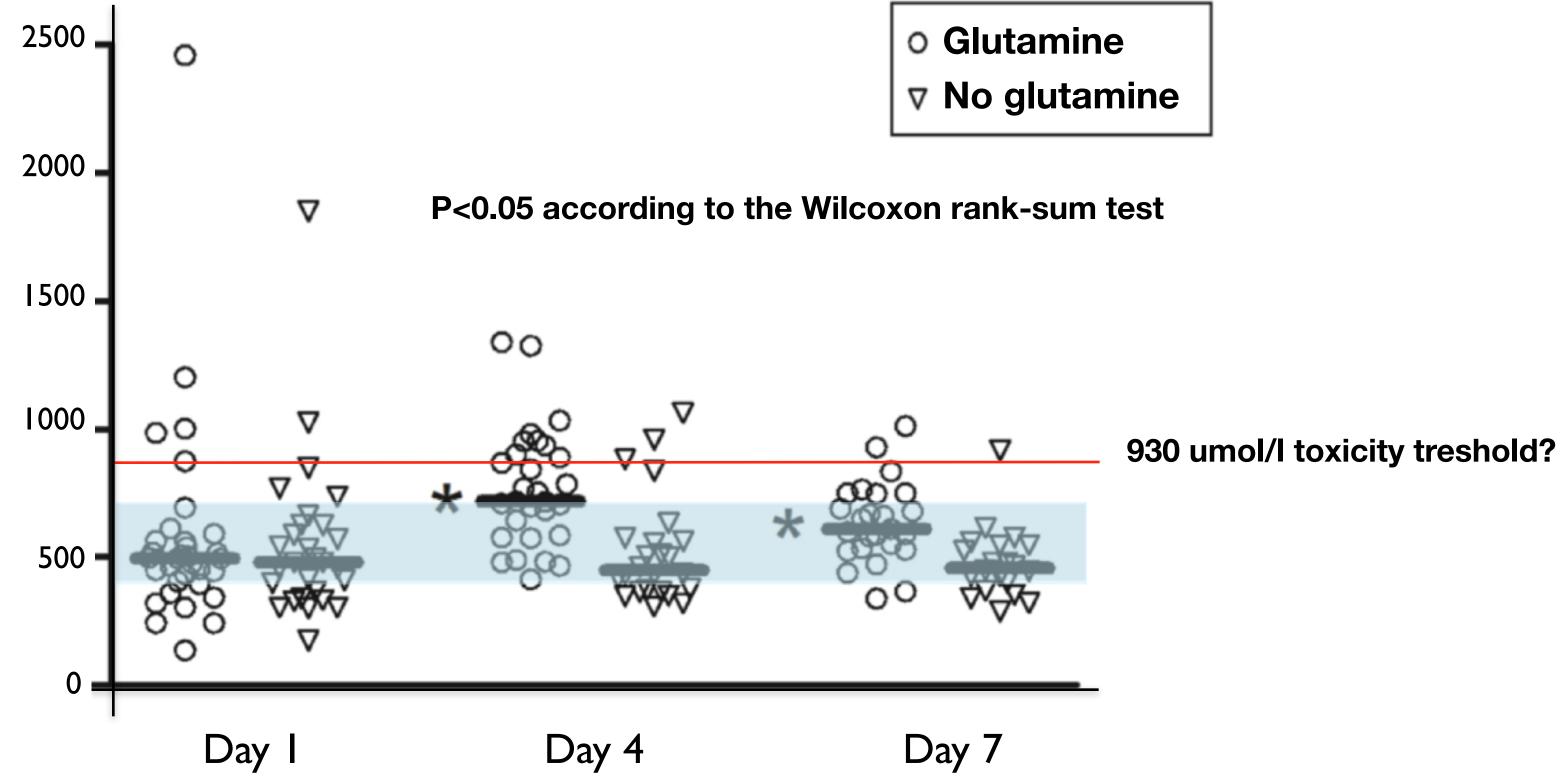
### **Glutamine induced increases** in citrulline and arginine



Mean (SEM) plasma concentrations of glutamine, citrulline, and arginine at Tincl and after the administration of intravenous 0.5 g alanyl-glutamine/kg per day just before T0 (n = 7). Student's t test was used to determine significant differences in amino acid concentrations between Tincl and T0. \*P, 0.05. Tincl, time of inclusion; T0, start of the tracer infusion.




### Plasma AA levels in sepsis


| Median plasma<br>concentrations<br>(maximum) |           | Median plasma<br>concentrations<br>(maximum) | P-value | Medi<br>conc<br>(m |
|----------------------------------------------|-----------|----------------------------------------------|---------|--------------------|
|                                              | Survivors | Non-survivors                                |         | S                  |
| Glutamine                                    | 460.4     | 648.1                                        | 0.0074  |                    |
| Glutamate                                    | 60.6      | 41.8                                         | 0.0012  |                    |
| Methionine                                   | 26.9      | 42.5                                         | 0.0022  |                    |
| Arginine                                     | 83.2      | 87.8                                         | 0.8345  |                    |

Non-survivors have lower minimum levels of glutamate and arginine and **non-survivors have higher maximum levels of glutamine** and methionine, and lower levels of glutamate









Glutamine plasma levels µmol/L

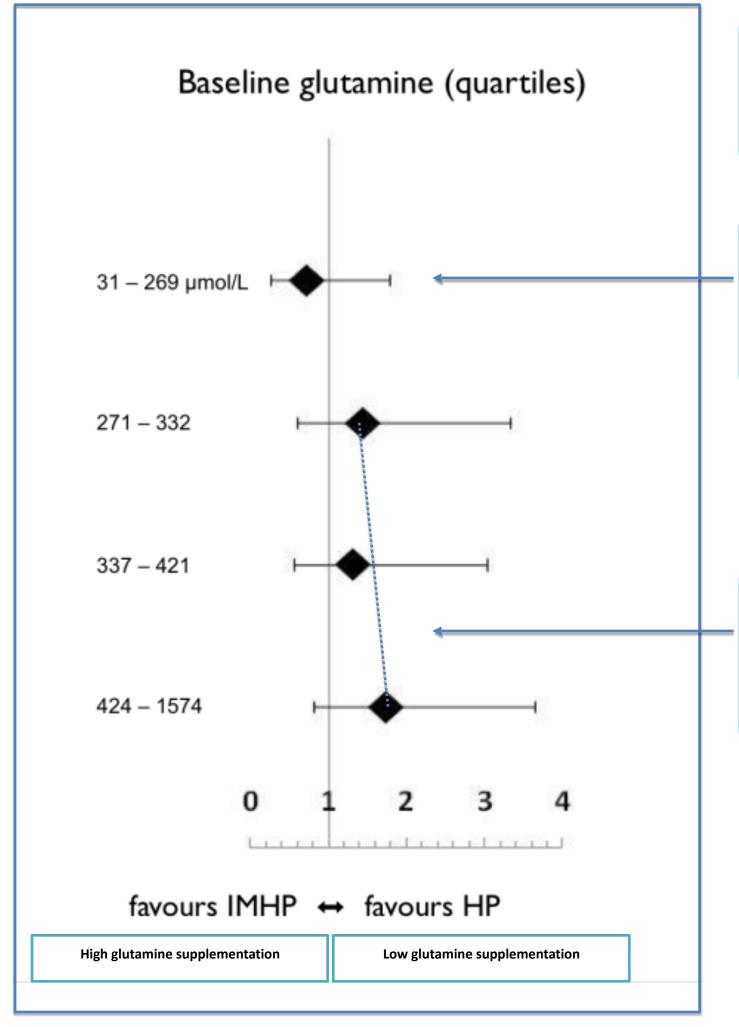


### **Glutamine levels**

Normal range of glutamine: 420 – 700 umol/l



#### **Treatment Effect on 28-d Mortality by Baseline Renal Dysfunction and Post-Baseline Dialysis**


| Multivariable Subgroup |                  |                  | OR (95% CI) compared to Placebo Arm |               |                                |
|------------------------|------------------|------------------|-------------------------------------|---------------|--------------------------------|
| Renal Dysfunction      | Ever on Dialysis | Deaths – no. (%) | Glutamine                           | Antioxidants  | Glutamine plus<br>Antioxidants |
| No                     | No               | 158/634 (25)     | 1.1 (0.6-1.8)                       | 1.1 (0.6-1.8) | 1.3 (0.8-2.2)                  |
| No                     | Yes              | 58/142 (41)      | 0.4 (0.2-1.2)                       | 0.5 (0.2-1.3) | 0.6 (0.3-1.6)                  |
| Yes                    | No               | 76/240 (32)      | 3.9 (1.7-9.0)                       | 3.3 (1.4-7.8) | 1.6 (0.7-3.8)                  |
| Yes                    | Yes              | 71/202 (35)      | 1.8 (0.7-4.4)                       | 1.4 (0.6-3.5) | 3.1 (1.2-7.6)                  |

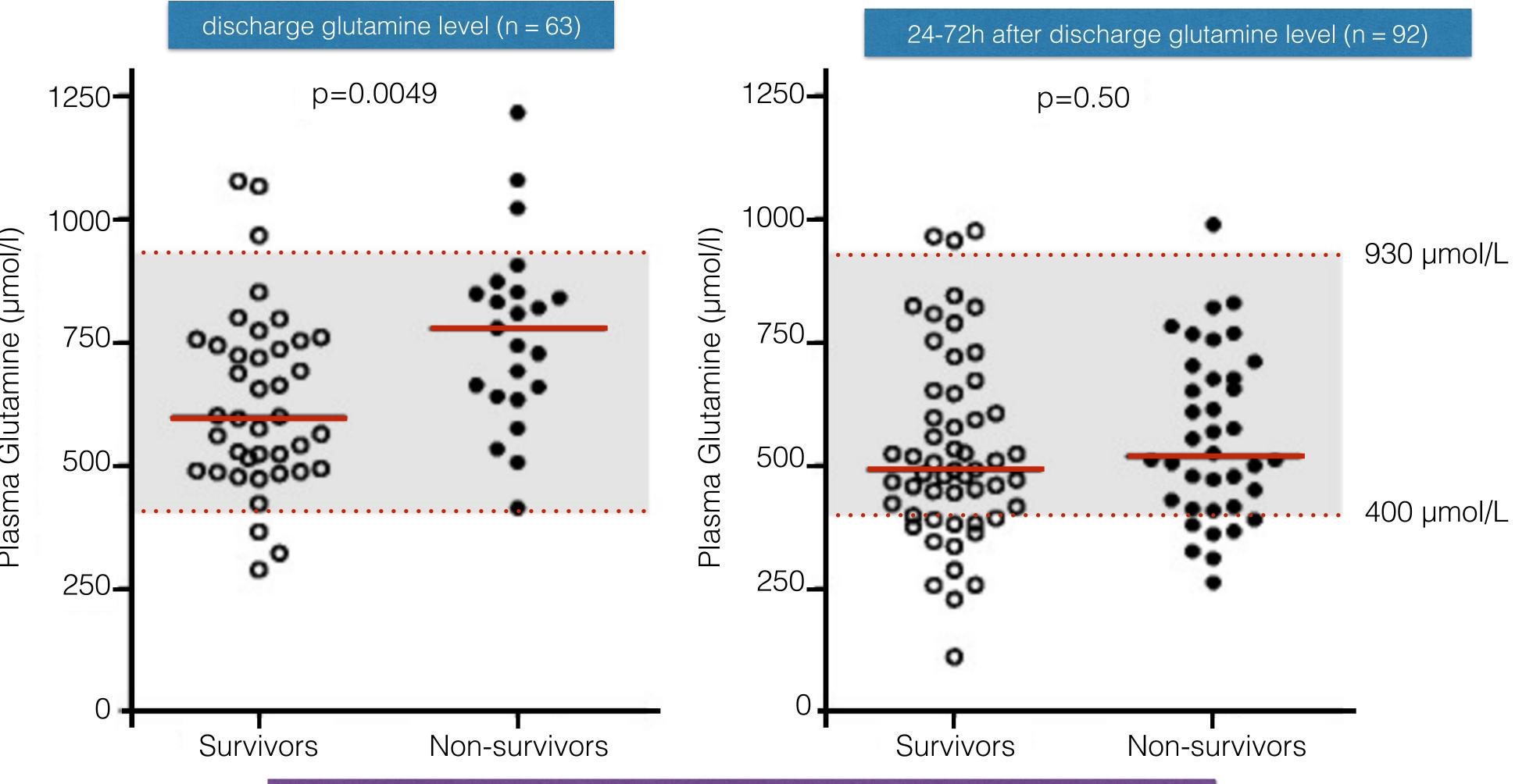
Cells in bold indicate treatment arm had significantly higher 28 day mortality than placebo at P < 0.05.





### Metaplus baseline glutamine levels effect on 6-months mortality






75% of patients have low glutamine levels at baseline (<421 mcmol/l)

No better outcome in patients with very low baseline glutamine levels (<31 – 269 mcmol/l)

trend towards poorer outcome in patients with higher baseline glutamine levels

# **Glutamine concentrations** at ICU discharge



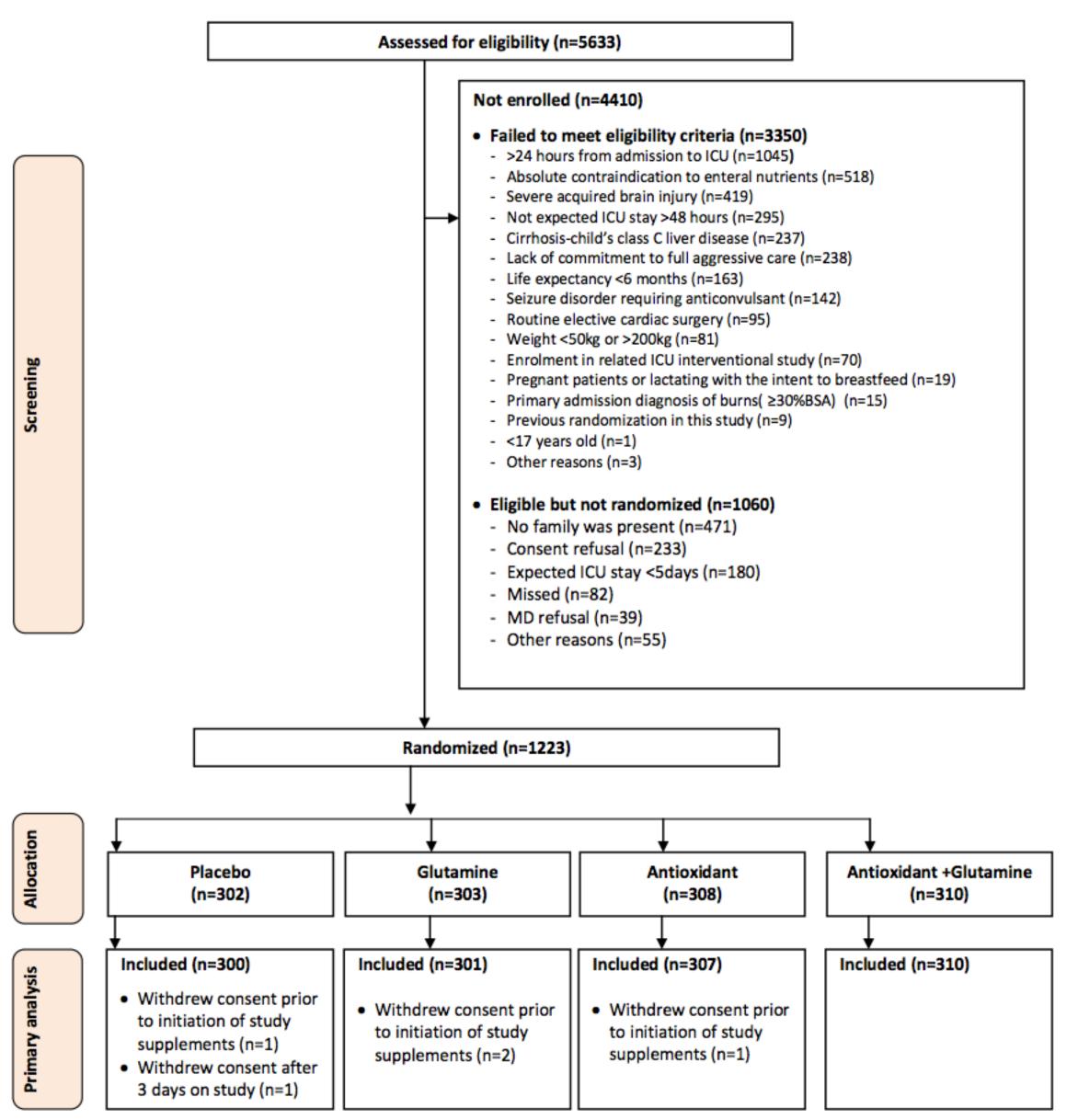
Plasma Glutamine (µmol/I)



Fully fed ICU patients IV glutamine for >3 days at ICU discharge and post-ICU.

Smedberg M, Crit Care 2014 18:677



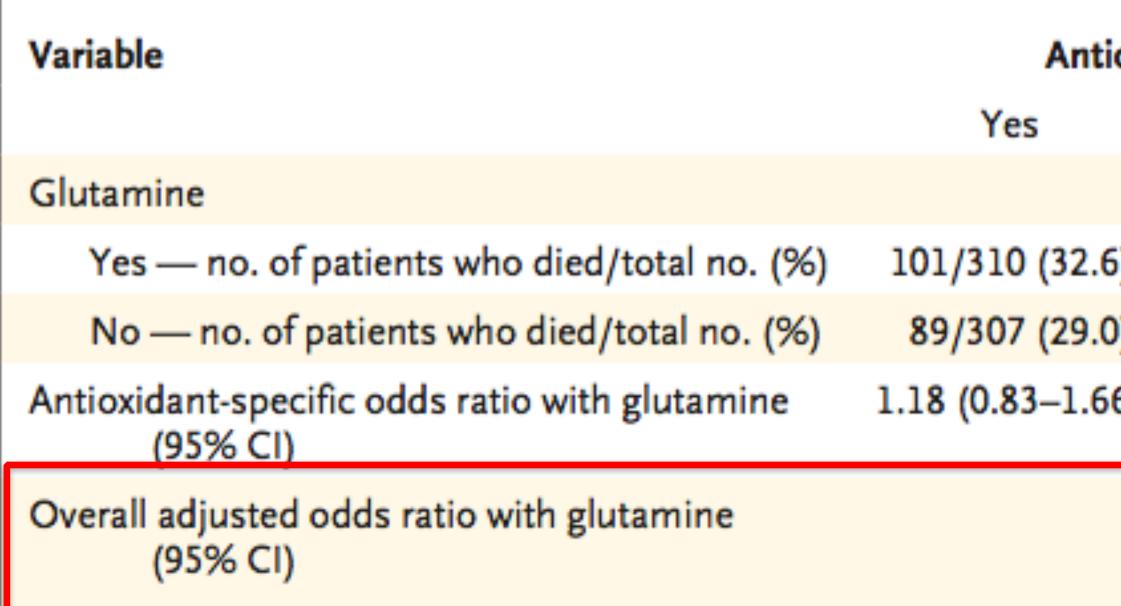

#### **ORIGINAL ARTICLE**

#### A Randomized Trial of Glutamine and Antioxidants in Critically Ill Patients

Daren Heyland, M.D., John Muscedere, M.D., Paul E. Wischmeyer, M.D., Deborah Cook, M.D., Gwynne Jones, M.D., Martin Albert, M.D., Gunnar Elke, M.D., Mette M. Berger, M.D., Ph.D., and Andrew G. Day, M.Sc., for the Canadian Critical Care Trials Group

> **Factorial Design** Placebo 302 patients **Glutamine 303 patients Antioxidant 308 patients** Antioxidant+glutamine 310 patients










# **Mortality 6 months after** glutamine supplementation

| Table 2. Odds Ratio for Death | According to Study Agent.* |
|-------------------------------|----------------------------|
|-------------------------------|----------------------------|



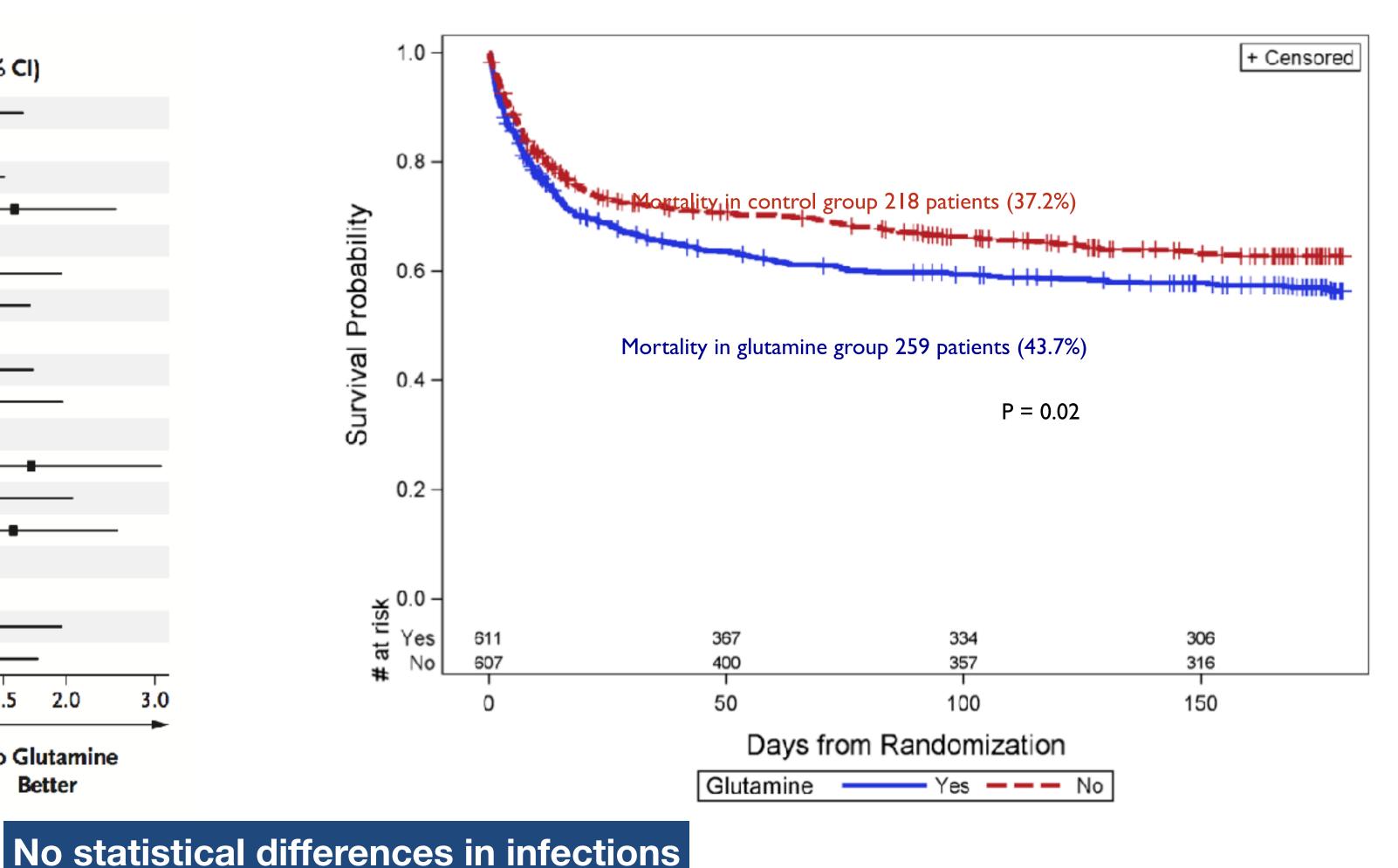


20



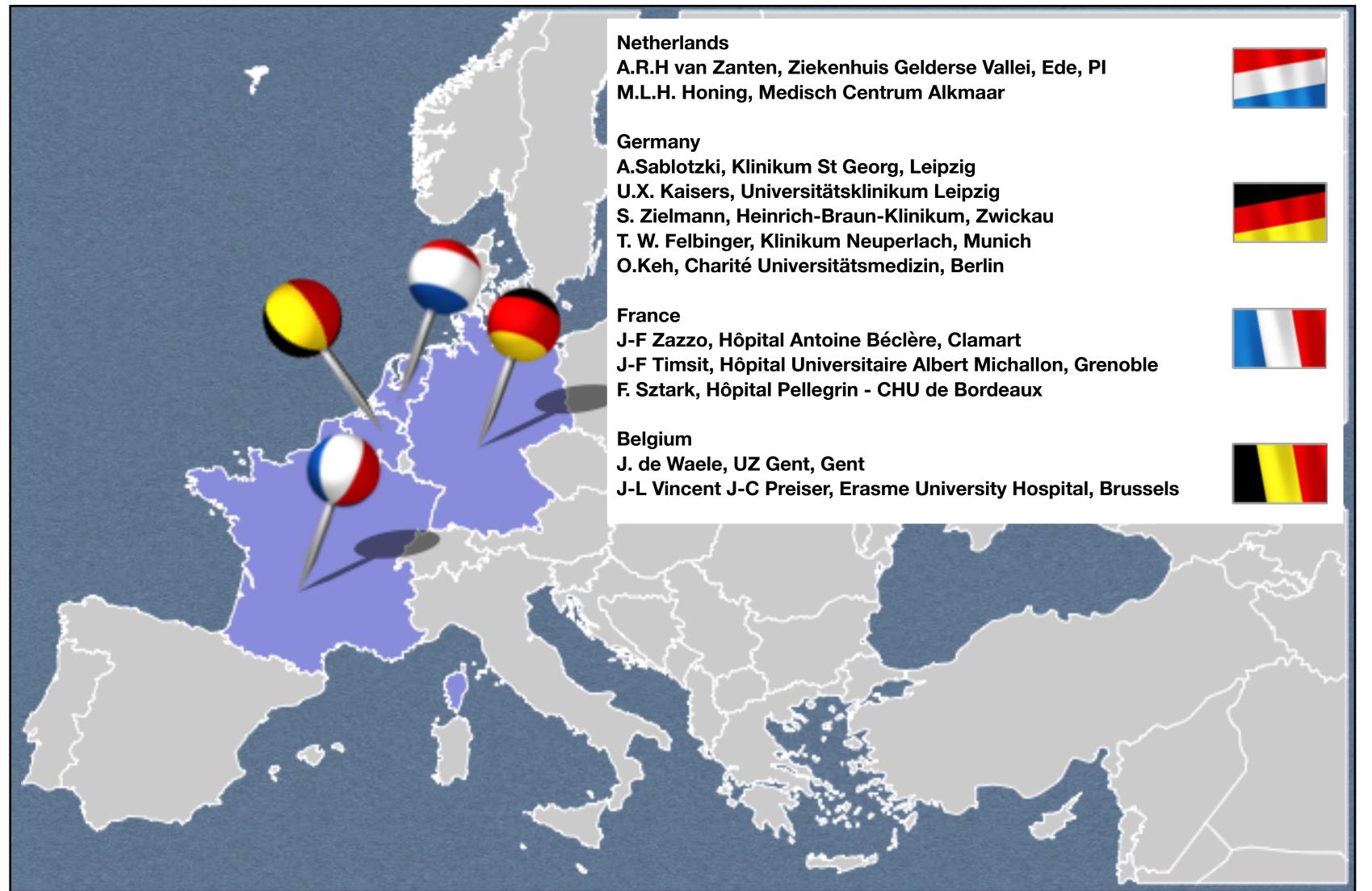
| iox | idants           | Glutamine-Specific<br>Odds Ratio with<br>Antioxidants (95%) | Overall Adjusted<br>Odds Ratio with<br>Antioxidants (95% CI) | P Valu |
|-----|------------------|-------------------------------------------------------------|--------------------------------------------------------------|--------|
|     | No               |                                                             |                                                              |        |
|     |                  |                                                             | 1.09 (0.86–1.40)                                             | 0.48   |
| 6)  | 97/301 (32.2)    | 1.02 (0.72-1.43)                                            |                                                              |        |
| 0)  | 76/300 (25.3)    | 1.20 (0.84–1.72)                                            |                                                              |        |
| 56) | 1.40 (0.98–2.00) |                                                             |                                                              |        |
|     | 1.28 (1.00–1.64) |                                                             |                                                              | 0.05   |
|     |                  |                                                             |                                                              |        |

No effect in antioxydant group on mortality


Heyland D. N Engl J Med 2013;368;16



### Mortality 6 months after glutamine supplementation


| A Glutamine                           |                     |                |                       |       |
|---------------------------------------|---------------------|----------------|-----------------------|-------|
| Subgroup                              | Od                  | lds Ratio (95% | S CI)                 |       |
| All patients                          |                     |                | _                     |       |
| No. of organ failures on presentation |                     |                |                       |       |
| 2                                     |                     |                | -                     |       |
| >2                                    |                     |                | •                     |       |
| APACHE II score                       |                     |                |                       |       |
| ≤Median                               |                     |                |                       |       |
| >Median                               |                     |                |                       |       |
| Admission diagnosis                   |                     |                |                       |       |
| Sepsis                                |                     |                |                       |       |
| Other                                 |                     |                |                       |       |
| Age                                   |                     |                |                       |       |
| <55 yr                                |                     |                | -                     |       |
| 55 to <65 yr                          |                     |                |                       |       |
| 65 to <75 yr                          |                     | 1              | •                     | -     |
| ≥75 yr                                |                     | •              |                       |       |
| Charlson comorbidity index score      |                     |                |                       |       |
| 0-1                                   |                     |                |                       |       |
| >1                                    |                     |                |                       |       |
|                                       | 0.5 0.7             | 1.0 1          | .5 2.0                | 3.0   |
|                                       | Glutamine<br>Better | No             | o Glutamine<br>Better | )     |
|                                       |                     |                | No et                 | atiet |







### MetaPlus Study











#### during ICU stay up to maximum of day 28

| Nutrients (per 1500 mL)     | IMHP                | HP                 |
|-----------------------------|---------------------|--------------------|
| Energy                      | 1920 kcal           | 1920 kcal          |
| Protein (g)                 | 112.5 g (23.4 En%)  | 112.5 g (23.4 En%) |
| Cas/ wheat hydr / Ala-Gln   | - 41% / 39% / 20%   | 100 %/0/0          |
| Glutamine                   | - 30 g              | 9 g                |
| Carbohydrates               | 141 g - (29.3 En%)  | 231 g - (48 En%)   |
| Fructose                    | • 0 g               | - 0 g              |
| Fat                         | 96 g (45 En%)       | 55.5 g (26.3 En%)  |
| MCT                         | - <del>19.5 g</del> | • 0 g              |
| EPA – DHA                   | - 7.5 g             | • 0 g              |
| Anti-oxidants               | Above normal values | Normal values      |
| • vitamin C                 | = 690 mg            | = 195 mg           |
| • vitamin E (alpha toco)    | = 266 mg (400 IU)   | = 22.5 mg          |
| • Selenium                  | = 285 mcg           | = 112.5 mcg        |
| • Zinc                      | = 30 mg             | = 22.5 mg          |
| Other Vit / Min./ trace el. | Normal values       | Normal values      |
| Fiber                       | 22.5 g (2.3 En%)    | 22.5 g (2.3 En%)   |



### **Product compositions**



### **Incidence** new infections

| Primary Outcome Measure                          | IMHP       | HP         | P value |
|--------------------------------------------------|------------|------------|---------|
|                                                  | n=152      | n=149      |         |
| AII                                              | 53%        | <b>52%</b> | 0.961   |
|                                                  |            |            |         |
| <b>Medical</b><br>(IMHP n=54 vs. Protison n=55)  | 39%        | 47%        | 0.377   |
| <b>Surgical</b><br>(IMHP n=81 vs. Protison n=75) | <b>62%</b> | 51%        | 0.164   |
| <b>Trauma</b><br>(IMHP n=55 vs. Protison n=54)   | 58%        | 67%        | 0.361   |



• % of subjects with at least one infection after start study product, using CDC-infection criteria • No statistical significant differences between IMHP and Protison based on Chi square tests.





|                            | 28-days<br>Incider |            |         |
|----------------------------|--------------------|------------|---------|
|                            | IMHP               | HP         | p value |
| <b>All</b><br>(n=168)      | <b>20%</b>         | 17%        | 0.420   |
|                            |                    |            |         |
| <b>Medical</b> (n=109)     | 35%                | <b>24%</b> | 0.186   |
| <b>Surgical</b><br>(n=156) | 14%                | 16%        | 0.670   |
| <b>Trauma</b><br>(n=109)   | 7%                 | 4%         | 0.679   |

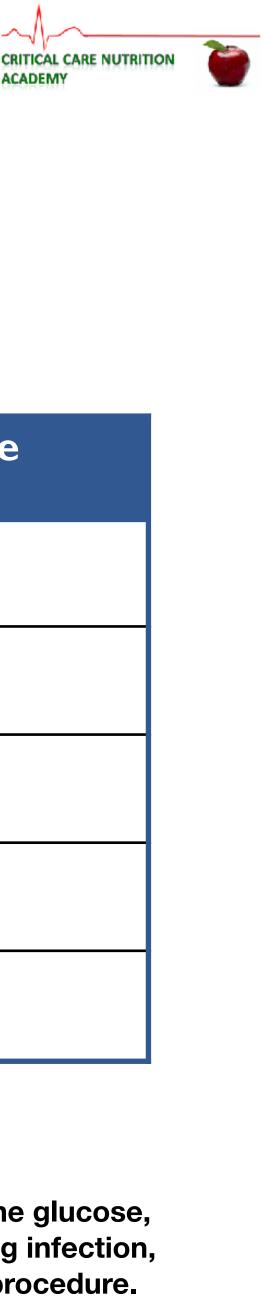
Differences between IMHP and HP based on Chi square tests.



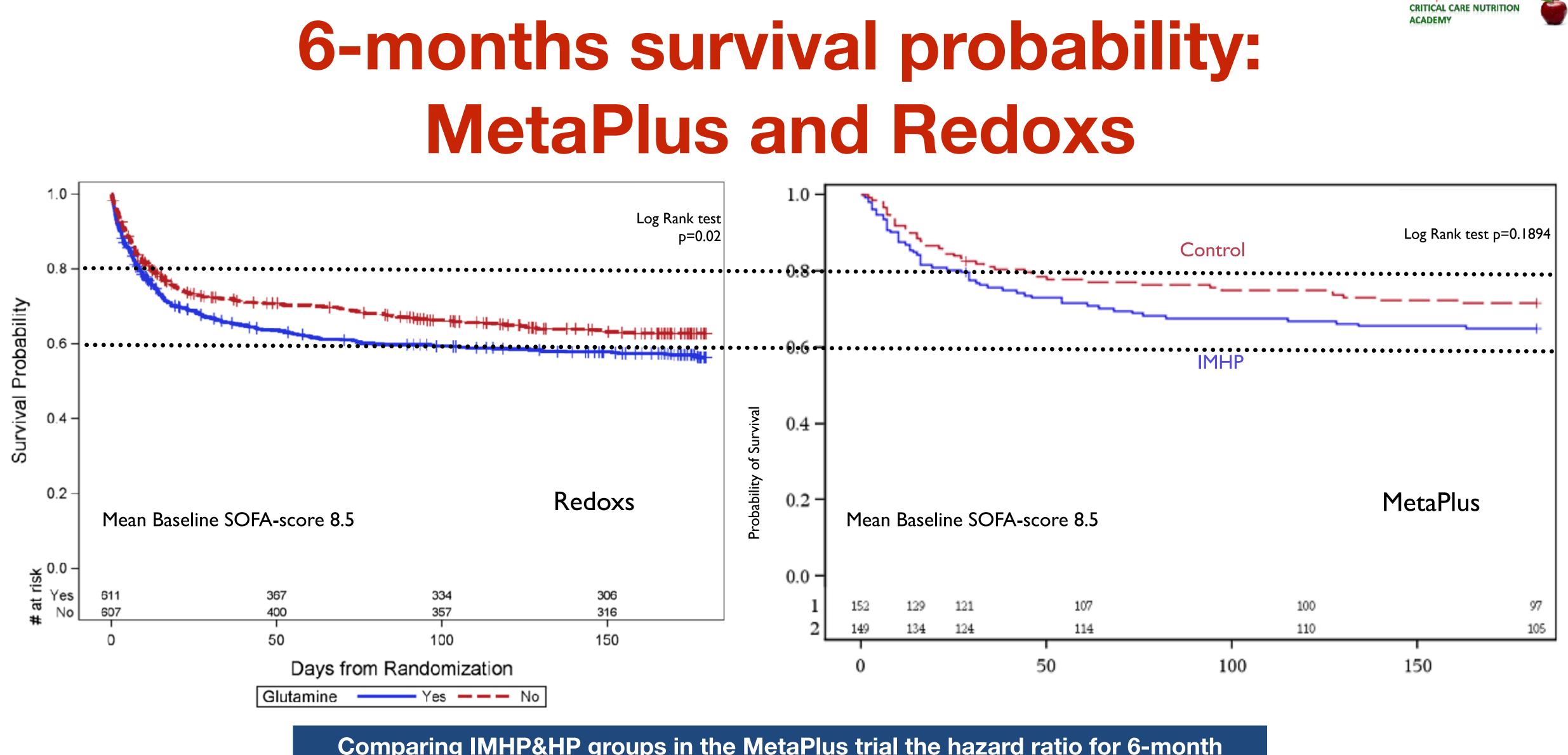
### Mortality

|                            | 6-months<br>Incider | 6-months mortality<br>Incidence (%) |         |  |
|----------------------------|---------------------|-------------------------------------|---------|--|
|                            | IMHP                | HP                                  | p value |  |
| <b>All</b><br>(n=297)      | 35%                 | 28%                                 | 0.212   |  |
|                            |                     |                                     |         |  |
| Medical<br>(n=109)         | 54%                 | 35%                                 | 0.044   |  |
| <b>Surgical</b><br>(n=152) | 27%                 | 28%                                 | 0.900   |  |
| <b>Trauma</b><br>(n=107)   | I 5%                | I 7%                                | 0.759   |  |




# 6-months mortality Cox hazard model

After predefined covariates were tested in univariate analysis

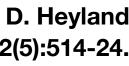

|                           | Hazard Ratio | Lower Limit | Upper Limit | P value |
|---------------------------|--------------|-------------|-------------|---------|
| IMHP vs. Protison         | I.57         | I.03        | 2.39        | 0.036   |
| Age (70-80 vs. age (>80)  | 0.47         | 0.27        | 0.81        | 0.006   |
| Age (50-70) vs. age (>80) | 0.24         | 0.14        | 0.43        | <0.001  |
| Age (<50) vs. age (>80)   | 0.12         | 0.05        | 0.27        | <0.001  |
| APACHE-II score (unit)    | I.05         | I.02        | I.09        | <0.001  |

#### After adjustment for age and APACHE-II score, risk of death is 57% higher for patients on IMHP versus control feed patients (P=0.036)

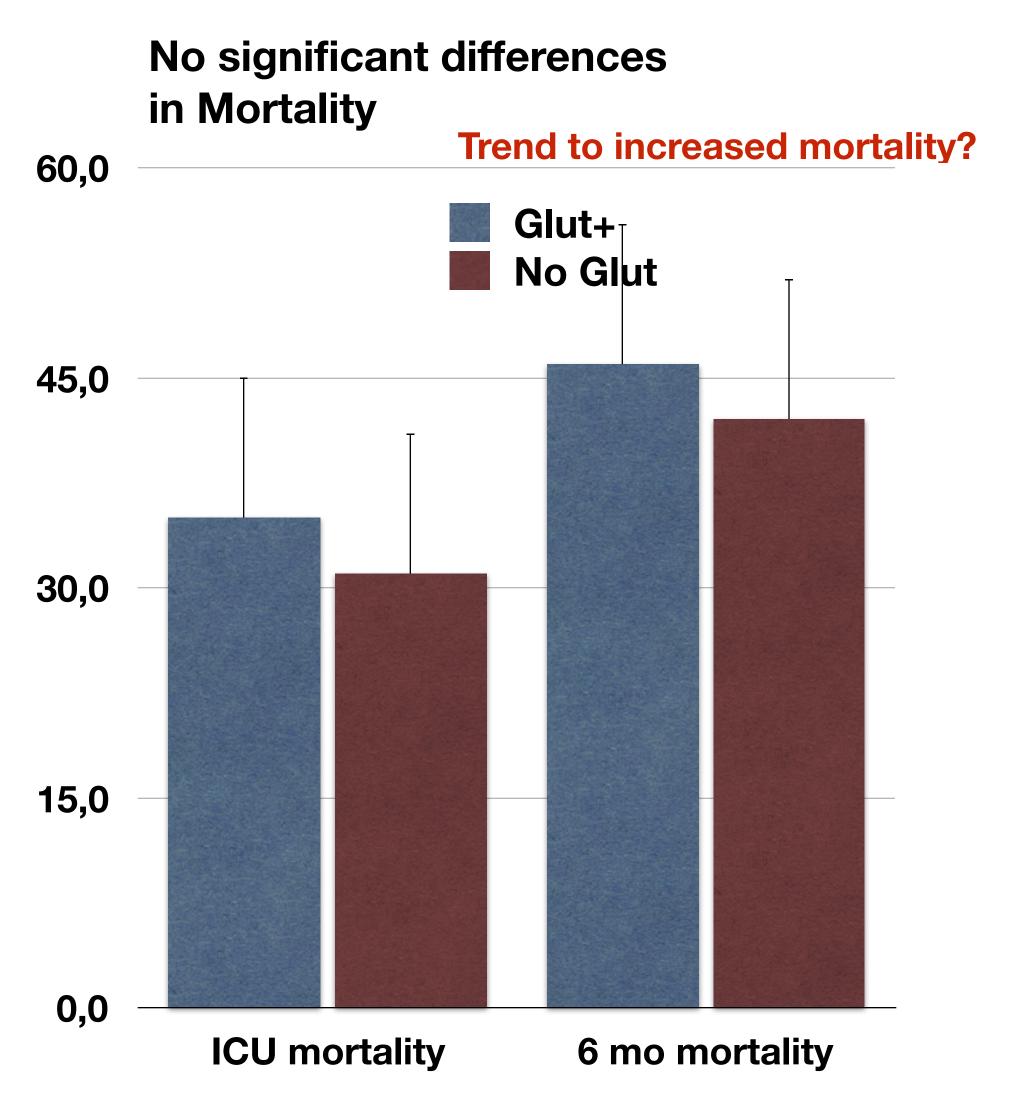
pre-defined covariates: age (<50, 51-70, 71-80, >80 yrs), sex, BMI, APACHE-II score, adj. pred. mortality, screening SOFA score, baseline glutamine, baseline glucose, type of patient (medical, surgical non trauma, surgical trauma, trauma non surgical), start study product since ICU admission, occurrence of pre-existing infection, and treatment with antibiotics at start of study. The final model was constructed using univariate screening followed by a stepwise variable-selection procedure.



# **MetaPlus and Redoxs**



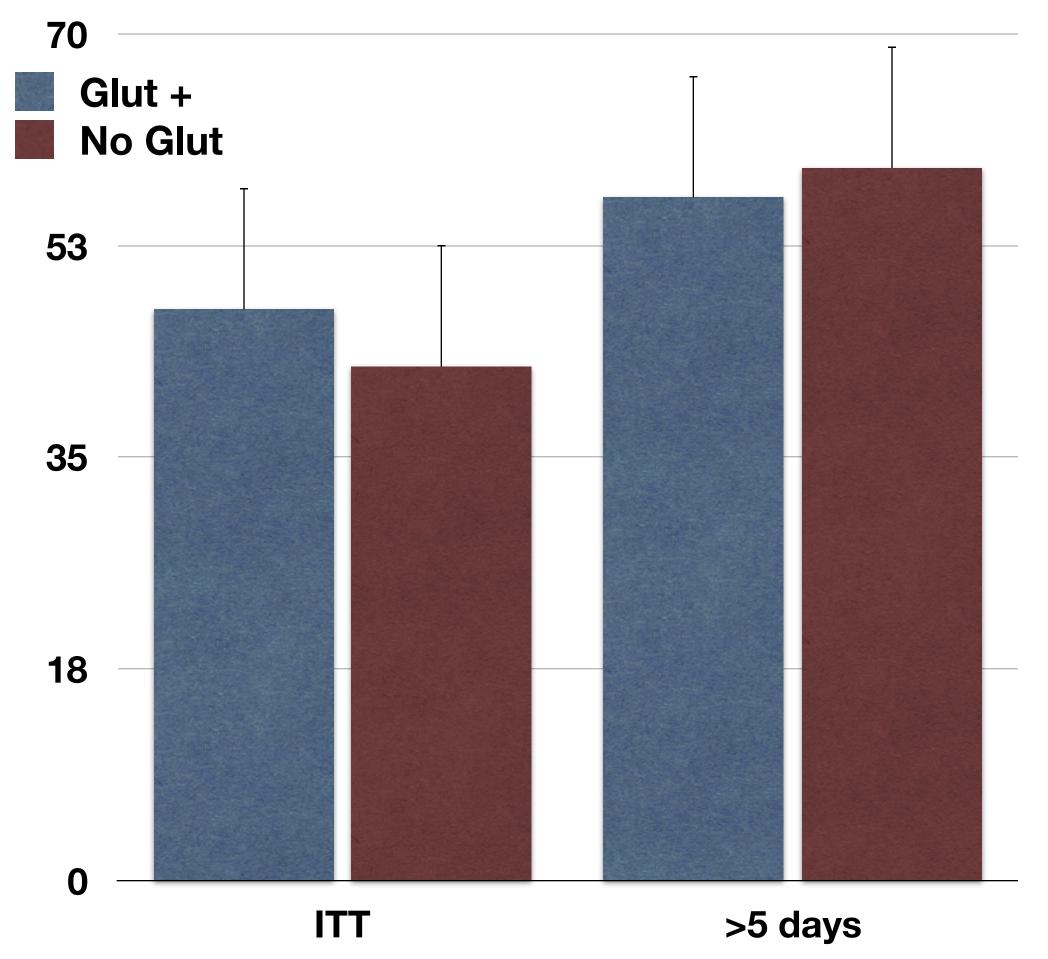

Comparing IMHP&HP groups in the MetaPlus trial the hazard ratio for 6-month mortality adjusted for age and APACHE-II score is 1.57 (95%CI, 1.03-2.39; P = .04).


moriality adjusted for age and APACHE-II score is 1.57 (95%-01, 1.05-2.59;



**Redoxs trial Data with permission D. Heyland** Van Zanten AR et al. JAMA 2014 Aug 6;312(5):514-24.










#### **The SIGNET Trial**

#### No significant differences in Confirmed infections within 14 days



P Andrews: Scottish Intensive Care Glutamine or seleNium Evaluative Trial: 2010



| Trial                        | Year       | Glutamine          | Control | Effect Size (95% CI)            | Proportion of<br>Weighting | f     |
|------------------------------|------------|--------------------|---------|---------------------------------|----------------------------|-------|
|                              |            | 10. of deaths/tote |         |                                 | %                          |       |
| Single center                |            |                    |         | Mortality                       | 12                         |       |
| Beale RJ                     | 2008       | 10/27              | 8/28    | • 1.30 (0.60-2.7                | 9) 1.47                    | = 0.0 |
| Cai G                        | 2008       | 17/55              | 20/55   | 0.85 (0.50-1.4                  |                            | - 0.0 |
| Carrol PV                    | 2003       | 1/12               | 0/7     | • 1.17 (0.04-30                 | .52) 0.08                  |       |
| Çekmen N                     | 2011       | 3/15               | 6/15    | 0.50 (0.15-1.6                  |                            |       |
| Duska F                      | 2008       | 2/20               | 0/10    | • 2.00 (0.10-40                 |                            |       |
| Eroglu A                     | 2009       | 1/20               | 1/20    | 1.00 (0.07-14                   | ,                          |       |
| Fuentes-Orozco C             | 2004       | 2/17               | 3/16    | • 0.63 (0.12-3.2                |                            |       |
| Fuentes-Orozco C             | 2008       | 2/22               | 5/22    |                                 |                            |       |
| Garrel D                     | 2003       | 2/19               | 12/22   | .19 (0.05-0.7                   |                            |       |
| Goeters C                    | 2002       | 11/46              | 21/49   | • 0.56 (0.30-1.0                |                            |       |
| Griffiths R                  | 2002       | 18/42              | 28/42   | • 0.64 (0.43-0.9                |                            |       |
| Hall JC                      | 2003       | 27/179             | 30/184  | 0.93 (0.57-1.4                  |                            |       |
| Houdijk APJ                  | 1998       | 4/41               | 3/39    | 1.27 (0.30-5.3                  |                            |       |
| Jensen JL                    | 1996       | 1/14               | 1/14    | 1.00 (0.07-14                   |                            |       |
| Jones C                      | 1999       | 12/26              | 10/24   | • 1.11 (0.59–2.0                |                            |       |
| Kumar S                      | 2007       | 8/63               | 5/57    | 1.45 (0.50-4.1                  |                            |       |
| Luo M                        | 2008       | 1/29               | 0/15    | 1.03 (0.04-29                   |                            |       |
| McQuiggian M                 | 2008       | 0/10               | 2/10 -  | • 0.25 (0.01-4.8                |                            |       |
| Pérez-Bárcena J              | 2008       | 3/15               | 0/15    | ● ● ● 6.00 (0.33-10             |                            |       |
| Pérez-Bárcena J              | 2010       | 4/23               | 3/20    | • 1.16 (0.29-4.5                |                            |       |
| Schneider A                  | 2011       | 7/30               | 7/30    | 1.00 (0.40-2.5                  |                            |       |
| Tjader I                     | 2004       | 11/30              | 4/10    | 0.92 (0.38-2.2                  |                            |       |
| Wischmeyer PE                | 2001       | 2/15               | 5/16    | 0.43 (0.10-1.8                  |                            |       |
| Spindler-Vesel A             | 2007       | 1/32               | 6/81    | 0.42 (0.05-3.3                  |                            |       |
| Subtotal (I-squared=0.0%,    |            | -,                 | -,      | 0.80 (0.66–0.9                  |                            |       |
| Aulticenter                  |            |                    |         |                                 |                            |       |
| Andrews PJD                  | 2011       | 115/250            | 106/252 | + 1.09 (0.90-1.3                | 3) 21.97                   |       |
| Conejero R                   | 2002       | 14/47              | 9/37    | 1.22 (0.60-2.5                  | -                          |       |
| Dechelotte P                 | 2006       | 16/58              | 9/56    | • 1.72 (0.83-3.5                | -                          |       |
| Grau T                       | 2011       | 16/59              | 23/68   | 0.80 (0.47-1.3                  |                            |       |
| Heyland D                    | 2013       | 259/613            | 218/610 |                                 |                            |       |
| Wernerman J                  | 2011       | 14/205             | 20/208  | 0.71 (0.37-1.3                  |                            |       |
| Powell-Tuck J                | 1999       | 10/17              | 9/25    | 1.63 (0.85-3.1                  |                            |       |
| Subtotal (I-squared=7.6%,    |            | ,                  | ,       | 1.14 (1.03–1.2                  |                            |       |
|                              | ,          |                    |         |                                 | ,                          |       |
| Heterogeneity between groups | s: P=0.001 |                    |         |                                 | 100.00                     |       |
| Overall (I-squared=12.4%, P= | =0.272)    |                    |         | 0.95-1.1                        | .5)                        |       |
|                              |            |                    | 0.00911 | 1 110                           |                            |       |
|                              |            |                    | •       | Glutamine Better Control Better |                            |       |

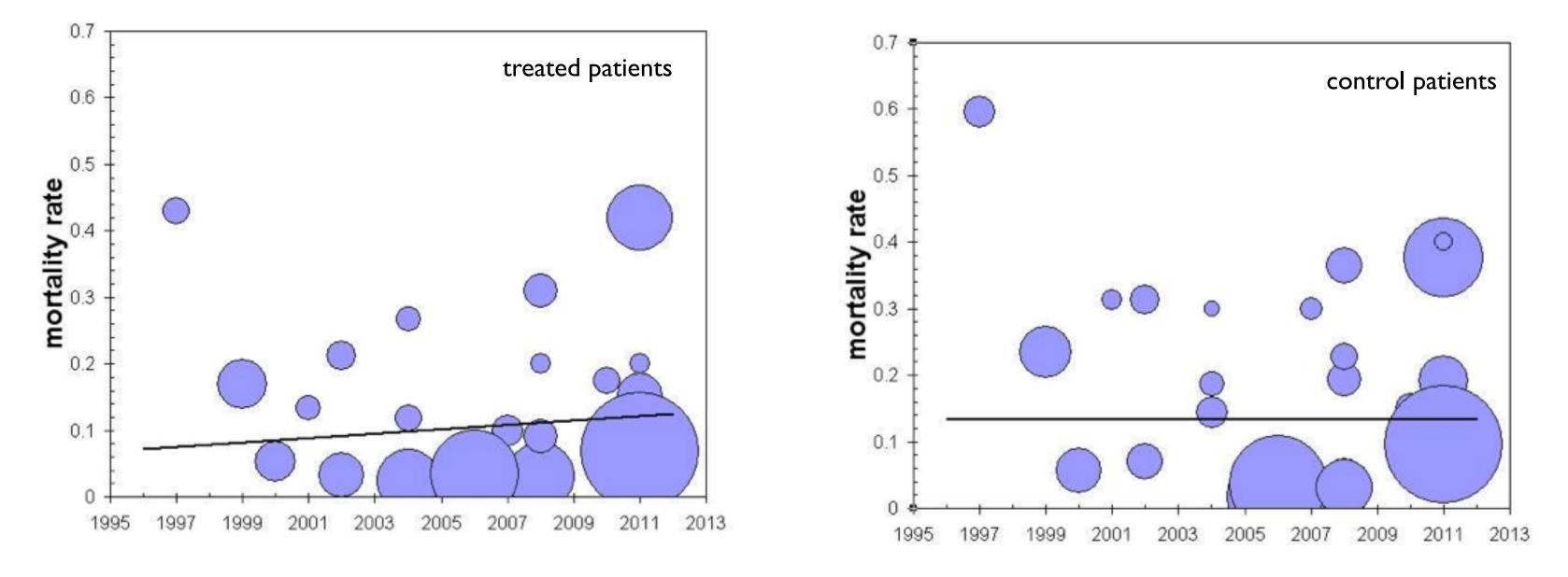






### **Overall mortality PN GLN trials**

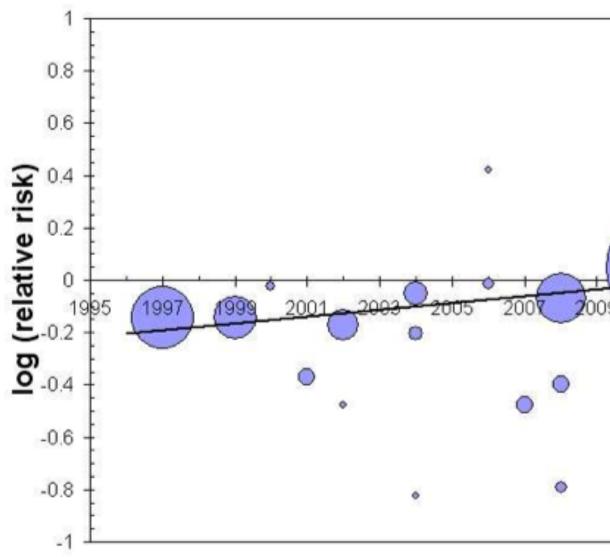
| Subgroup<br>analysis | Number of<br>trials | Number of<br>patients | Effect on overall mortality<br>[RR (95% CI), p] | Test for subgroup<br>differences |
|----------------------|---------------------|-----------------------|-------------------------------------------------|----------------------------------|
| Single center        | 19                  | 1011                  | 0.75 (0.60, 0.93), P=0.009                      | P=0.04                           |
| Multi-center         | 5                   | 1306                  | 1.03 (0.83,1.28) P=0.79                         |                                  |


Because of a concern about 'single-center' bias, these investigators showed that only the single center trials demonstrated a significant effect of glutamine on overall and hospital mortality and infectious outcomes with no beneficial effect observed in the multicenter trials.

outcomes with no beneficial effect observed in the multicenter trials.

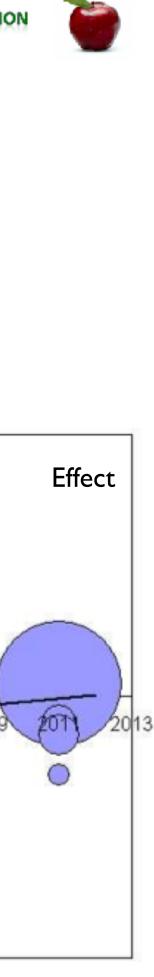


Wischmeyer P et al. Critical Care 2014, 18:R76


#### Meta-regression analysis of temporal trends (1995-2012) of mortality in patients given parenteral glutamine supplementation or controls not receiving this supplementation.

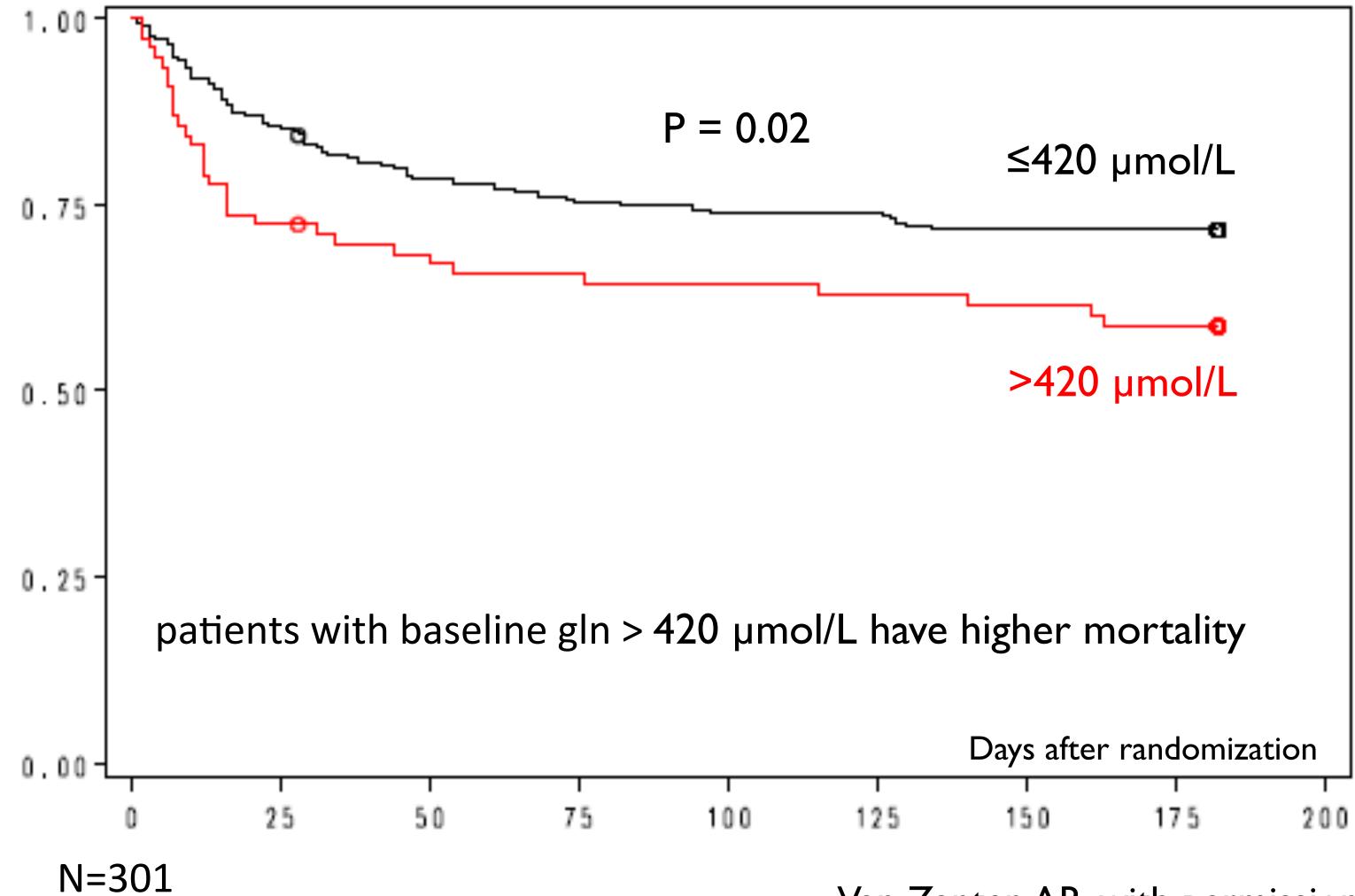


#### **REDOXS** and MetaPlus not included


time-course of the RR risk for the comparison of glutamine supplementation versus no-glutamine






Mortality reduction of parenteral glutamine has vanished over time

giuramine has vanished over time



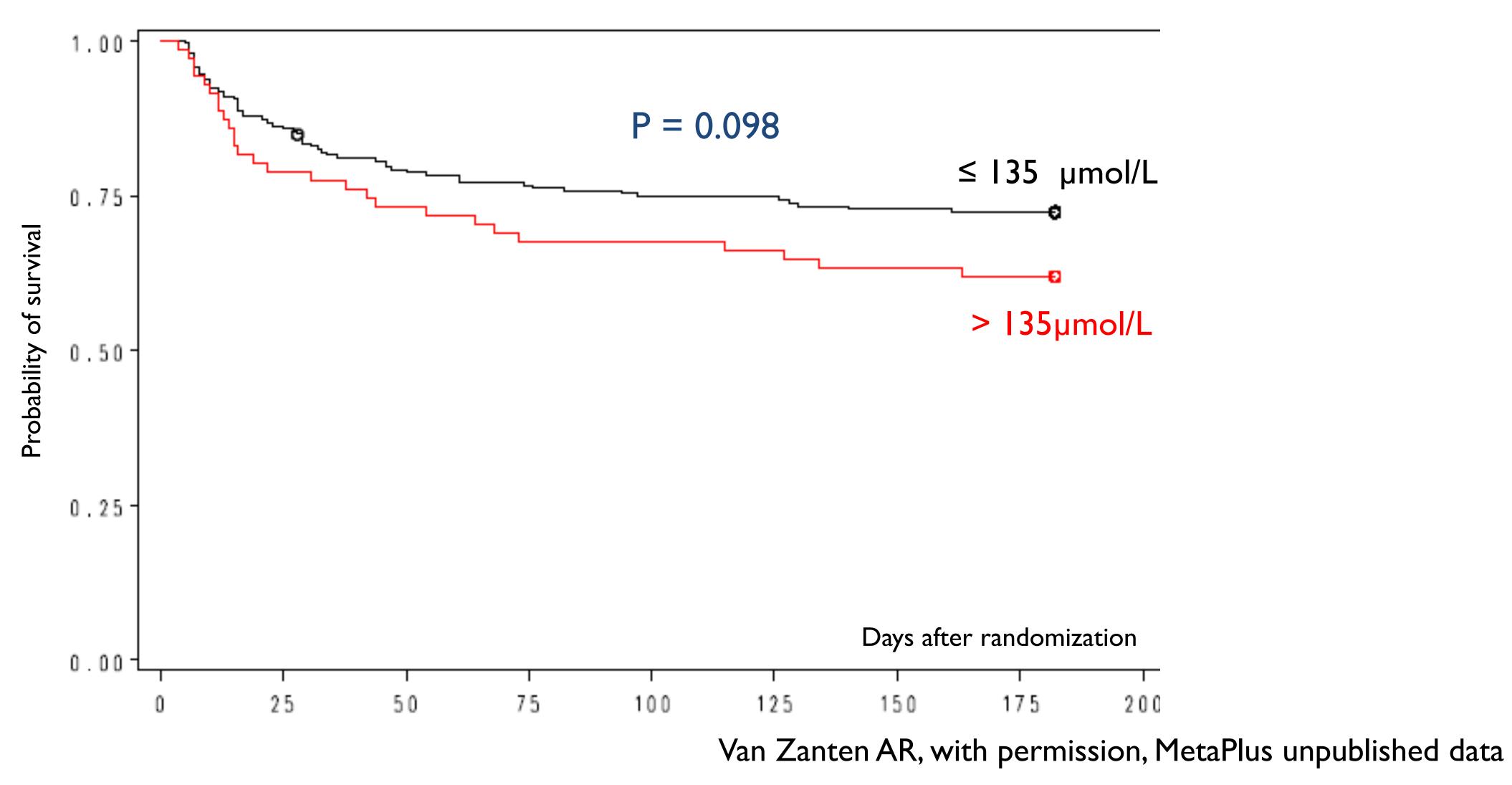








#### Survival & baseline Gln (baseline, cut-off 420 µmol/L)


Van Zanten AR, with permission, MetaPlus unpublished data

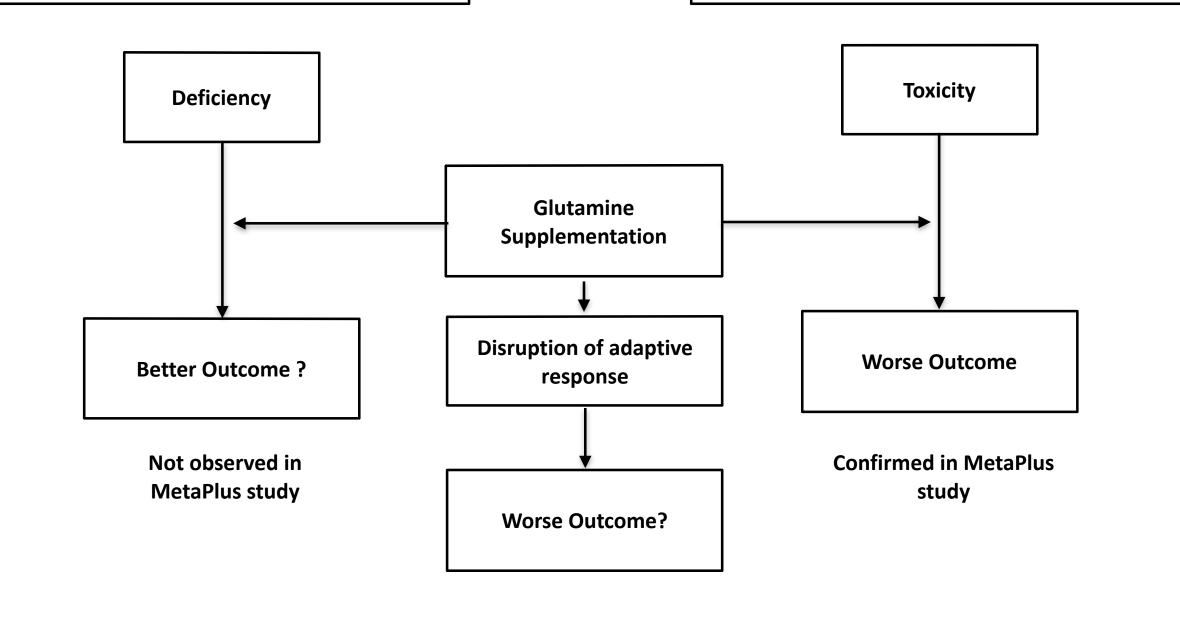




### Survival & Gln level increase

#### (day 4-baseline, cut-off 135µmol/L)



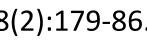





### **Glutamine and antioxidants:** status of their use in critical illness

Not observed in MetaPlus study

Low baseline glutamine associated with increased mortality?






**Confirmed in MetaPlus** study

High baseline glutamine associated with increased mortality





Issue 15 September 2014



- in critically ill patient populations.
- individually are inconclusive.
- recent, large-scale, multi-center trials.
- dose.
- recommendations can be considered.





Consequences of the REDOXS and MetaPlus trials: the end of an era of glutamine and antioxidant supplementation for critically ill patients?

There are now 2 studies (REDOXS & MetaPlus) that suggest that glutamine and antioxidants are harmful

Evidence in support of glutamine and antioxidants comes from old, single-centered RCTs and

The positive signal is only observed in meta-analysis of these RCTs which has not been confirmed in

Given that our first dictum in medicine is to do no harm, we cannot be confident that supplemental glutamine and antioxidants are safe, whether provided enterally or parenterally, whether high or low

More research on the safety and efficacy of glutamine and antioxidants is needed before treatment



van Zanten et al. Critical Care (2015) 19:294 DOI 10.1186/s13054-015-1002-x

#### RESEARCH

### Enteral glutamine supplementation in critically ill patients: a systematic review and meta-analysis

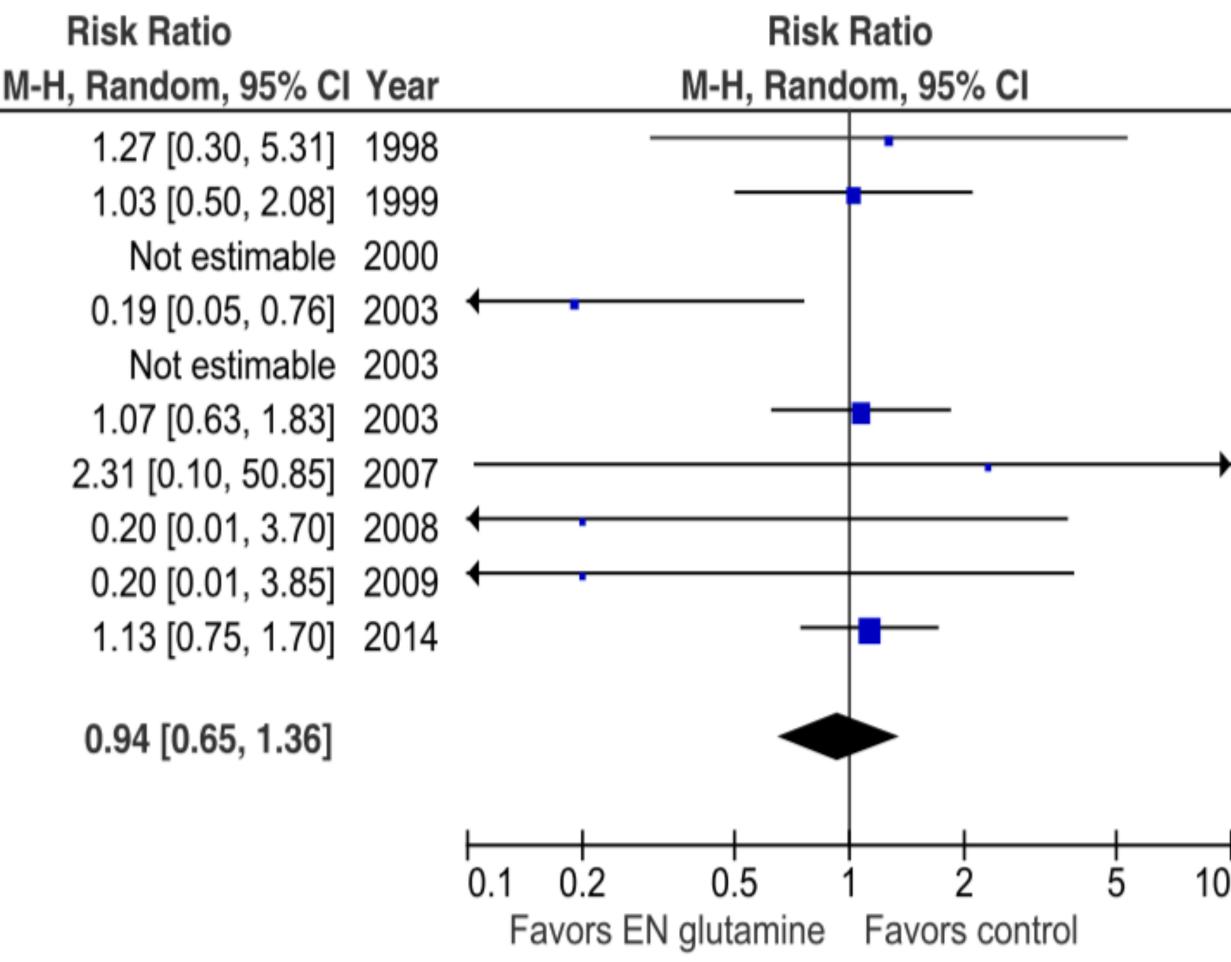
Arthur R. H. van Zanten<sup>1</sup>, Rupinder Dhaliwal<sup>2</sup>, Dominique Garrel<sup>3</sup> and Daren K. Heyland<sup>2\*</sup>





#### **Open Access**








## Hospital Mortality, all studies

|                                                                                                          | EN glutamine |       | Contr  | ol    |        |   |  |  |
|----------------------------------------------------------------------------------------------------------|--------------|-------|--------|-------|--------|---|--|--|
| Study or Subgroup                                                                                        | Events       | Total | Events | Total | Weight | Ν |  |  |
| Houdijk                                                                                                  | 4            | 41    | 3      | 39    | 6.1%   |   |  |  |
| Jones                                                                                                    | 10           | 26    | 9      | 24    | 19.2%  |   |  |  |
| Brantley                                                                                                 | 0            | 31    | 0      | 41    |        |   |  |  |
| Garrel                                                                                                   | 2            | 21    | 12     | 24    | 6.5%   |   |  |  |
| Zhou                                                                                                     | 0            | 20    | 0      | 20    |        |   |  |  |
| Hall                                                                                                     | 24           | 179   | 23     | 184   | 27.6%  |   |  |  |
| Lou                                                                                                      | 1            | 12    | 0      | 9     | 1.4%   |   |  |  |
| McQuiggan                                                                                                | 0            | 10    | 2      | 10    | 1.6%   |   |  |  |
| Pattanshetti                                                                                             | 0            | 15    | 2      | 15    | 1.5%   |   |  |  |
| van Zanten                                                                                               | 38           | 152   | 33     | 149   | 36.2%  |   |  |  |
| Total (95% CI)                                                                                           |              | 507   |        | 515   | 100.0% |   |  |  |
| Total events                                                                                             | 79           |       | 84     |       |        |   |  |  |
| Heterogeneity: Tau <sup>2</sup> = 0.06; Chi <sup>2</sup> = 8.86, df = 7 (P = 0.26); l <sup>2</sup> = 21% |              |       |        |       |        |   |  |  |
| Test for overall effect: $Z = 0.34$ (P = 0.74)                                                           |              |       |        |       |        |   |  |  |








## Hospital Mortality, trauma subgroup analysis

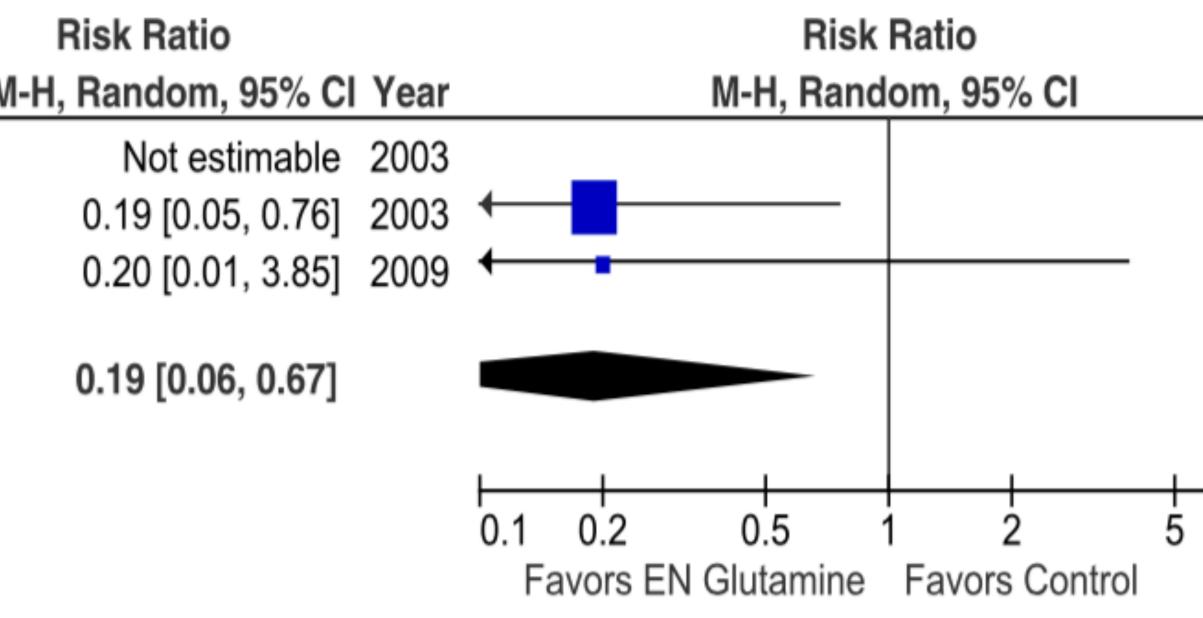
|                                                                                                         | EN Glutamine |         | Contr  | ol    |        |   |  |  |
|---------------------------------------------------------------------------------------------------------|--------------|---------|--------|-------|--------|---|--|--|
| Study or Subgroup                                                                                       | Events       | Total   | Events | Total | Weight | М |  |  |
| Houdijk                                                                                                 | 4            | 41      | 3      | 39    | 20.3%  |   |  |  |
| Brantley                                                                                                | 0            | 31      | 0      | 41    |        |   |  |  |
| Hall                                                                                                    | 7            | 76      | 6      | 78    | 38.2%  |   |  |  |
| McQuiggan                                                                                               | 0            | 10      | 2      | 10    | 4.9%   |   |  |  |
| van Zanten                                                                                              | 6            | 55      | 6      | 54    | 36.5%  |   |  |  |
| Total (95% CI)                                                                                          |              | 213     |        | 222   | 100.0% |   |  |  |
| Total events                                                                                            | 17           |         | 17     |       |        |   |  |  |
| Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.39, df = 3 (P = 0.71); l <sup>2</sup> = 0% |              |         |        |       |        |   |  |  |
| Test for overall effect: Z                                                                              | 2 = 0.10 (P  | = 0.92) |        |       |        |   |  |  |





van Zanten et al. Critical Care (2015) 19:294








## Hospital Mortality, burns subgroup analysis

|                                                                                                         | EN Glutamine |       | Contr  | ol    |        |   |  |  |  |
|---------------------------------------------------------------------------------------------------------|--------------|-------|--------|-------|--------|---|--|--|--|
| Study or Subgroup                                                                                       | Events       | Total | Events | Total | Weight | M |  |  |  |
| Zhou                                                                                                    | 0            | 20    | 0      | 20    |        |   |  |  |  |
| Garrel                                                                                                  | 2            | 21    | 12     | 24    | 82.2%  |   |  |  |  |
| Pattanshetti                                                                                            | 0            | 15    | 2      | 15    | 17.8%  |   |  |  |  |
| Total (95% CI)                                                                                          |              | 56    |        | 59    | 100.0% |   |  |  |  |
| Total events                                                                                            | 2            |       | 14     |       |        |   |  |  |  |
| Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.00, df = 1 (P = 0.98); l <sup>2</sup> = 0% |              |       |        |       |        |   |  |  |  |
| Test for overall effect: Z = 2.59 (P = 0.010)                                                           |              |       |        |       |        |   |  |  |  |

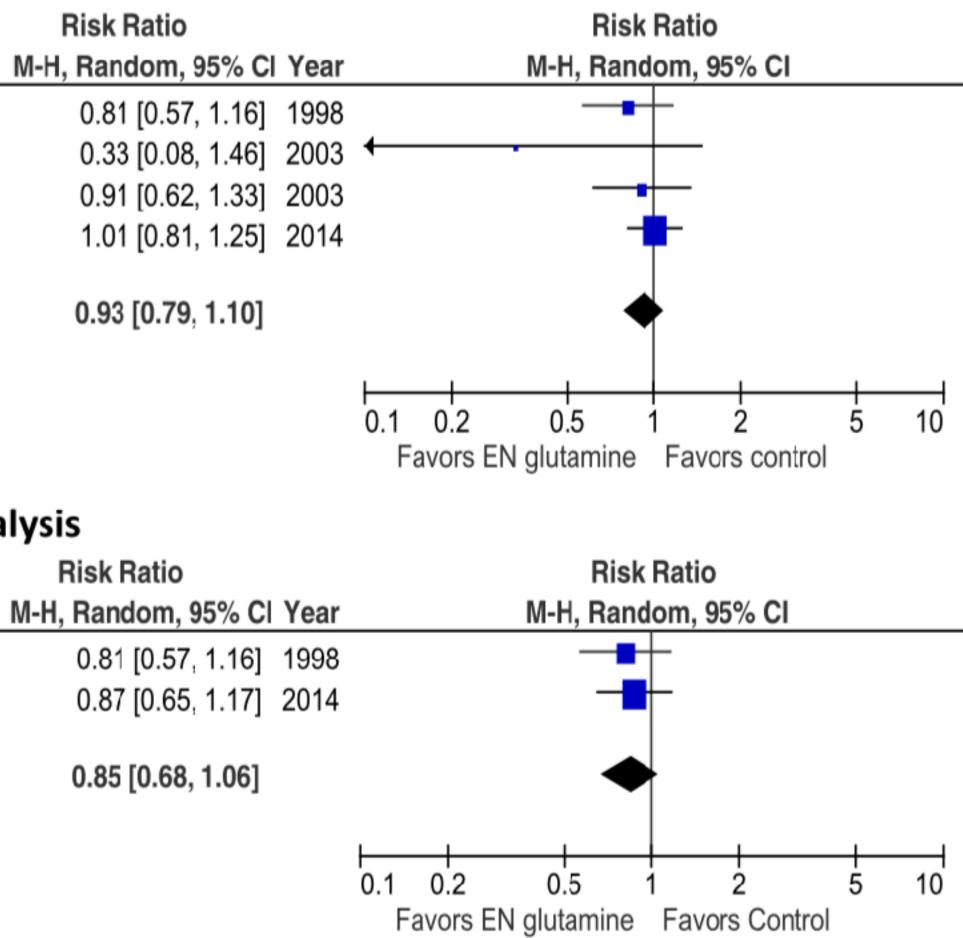











#### Infectious complications, all studies

|                                                                                                         | EN gluta    | mine    | Contr  | ol    |        |  |  |  |
|---------------------------------------------------------------------------------------------------------|-------------|---------|--------|-------|--------|--|--|--|
| Study or Subgroup                                                                                       | Events      | Total   | Events | Total | Weight |  |  |  |
| Houdijk                                                                                                 | 20          | 35      | 26     | 37    | 21.5%  |  |  |  |
| Zhou                                                                                                    | 2           | 20      | 6      | 20    | 1.2%   |  |  |  |
| Hall                                                                                                    | 38          | 179     | 43     | 184   | 18.4%  |  |  |  |
| van Zanten                                                                                              | 80          | 152     | 78     | 149   | 58.8%  |  |  |  |
| Total (95% CI)                                                                                          |             | 386     |        | 390   | 100.0% |  |  |  |
| Total events                                                                                            | 140         |         | 153    |       |        |  |  |  |
| Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 2.94, df = 3 (P = 0.40); l <sup>2</sup> = 0% |             |         |        |       |        |  |  |  |
| Test for overall effect: 2                                                                              | Z = 0.86 (P | = 0.39) |        |       |        |  |  |  |

#### Infectious complications, trauma subgroup analysis

|                                                                                                         | EN gluta | mine  | Contr  | ol    |        |  |  |  |
|---------------------------------------------------------------------------------------------------------|----------|-------|--------|-------|--------|--|--|--|
| Study or Subgroup                                                                                       | Events   | Total | Events | Total | Weight |  |  |  |
| Houdijk                                                                                                 | 20       | 35    | 26     | 37    | 40.5%  |  |  |  |
| van Zanten                                                                                              | 32       | 55    | 36     | 54    | 59.5%  |  |  |  |
|                                                                                                         |          |       |        |       |        |  |  |  |
| Total (95% CI)                                                                                          |          | 90    |        | 91    | 100.0% |  |  |  |
| Total events                                                                                            | 52       |       | 62     |       |        |  |  |  |
| Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.09, df = 1 (P = 0.76); l <sup>2</sup> = 0% |          |       |        |       |        |  |  |  |
| Test for overall effect: Z = 1.43 (P = 0.15)                                                            |          |       |        |       |        |  |  |  |

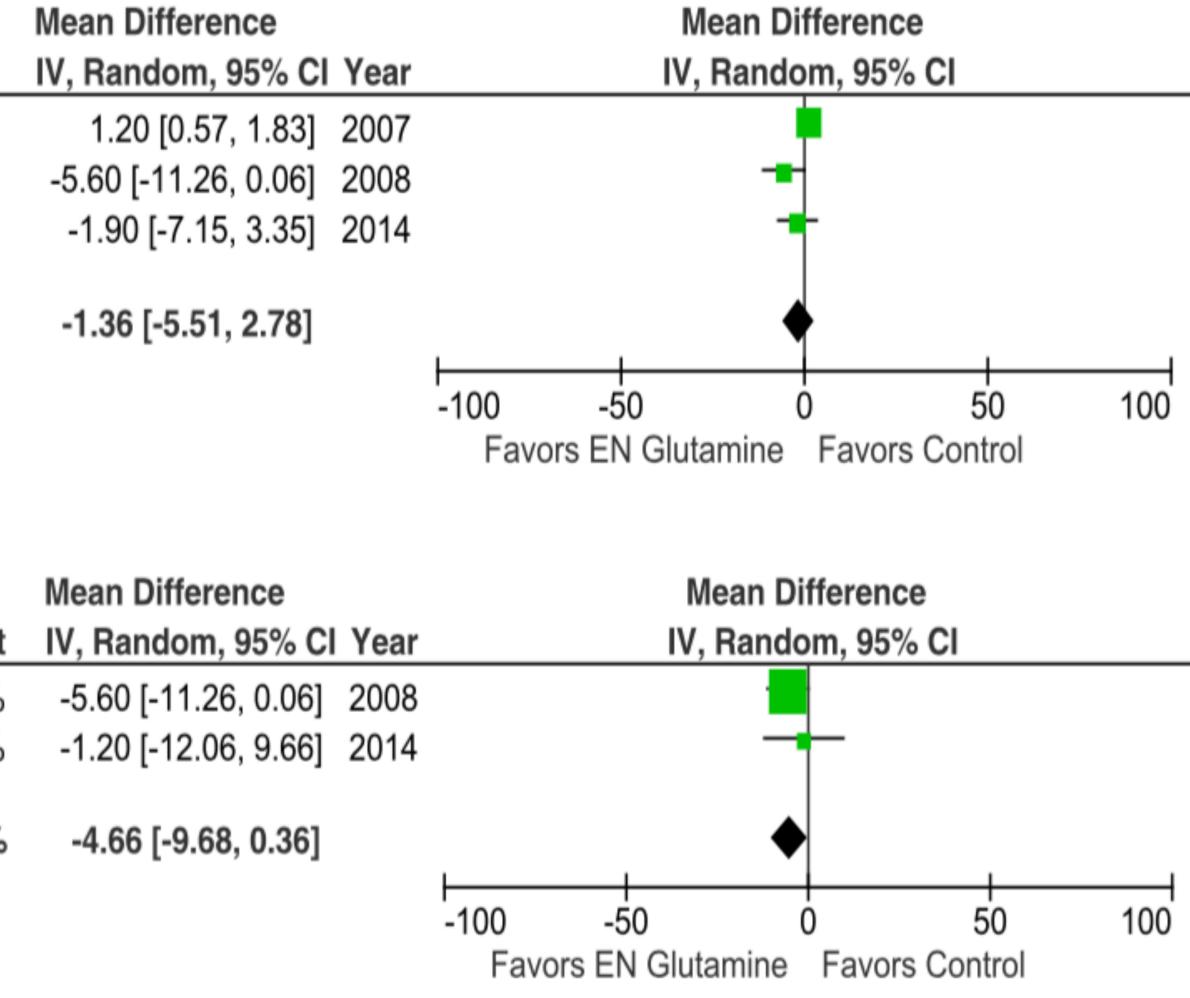








### ICU LOS, all studies


|                                                                                                                                                          | EN Glutamine                  |      |       | Co   | I   |       |        |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------|-------|------|-----|-------|--------|--|
| Study or Subgroup                                                                                                                                        | Mean                          | SD   | Total | Mean | SD  | Total | Weight |  |
| Lou                                                                                                                                                      | 8.1                           | 0.4  | 12    | 6.9  | 0.9 | 9     | 47.5%  |  |
| McQuiggan                                                                                                                                                | 4.8                           | 6.7  | 10    | 10.4 | 6.2 | 10    | 25.3%  |  |
| van Zanten                                                                                                                                               | 23.7                          | 22.4 | 152   | 25.6 | 24  | 149   | 27.1%  |  |
| Total (95% CI)                                                                                                                                           | Total (95% CI) 174 168 100.0% |      |       |      |     |       |        |  |
| Heterogeneity: Tau <sup>2</sup> = 9.30; Chi <sup>2</sup> = 6.73, df = 2 (P = 0.03); l <sup>2</sup> = 70%<br>Test for overall effect: Z = 0.65 (P = 0.52) |                               |      |       |      |     |       |        |  |

### ICU LOS, trauma subgroup analysis

|                                                                                                         | EN G | alutam | ine   | С    |      |       |        |
|---------------------------------------------------------------------------------------------------------|------|--------|-------|------|------|-------|--------|
| Study or Subgroup                                                                                       | Mean | SD     | Total | Mean | SD   | Total | Weight |
| McQuiggan                                                                                               | 4.8  | 6.7    | 10    | 10.4 | 6.2  | 10    | 78.6%  |
| van Zanten                                                                                              | 31.3 | 30.3   | 55    | 32.5 | 27.5 | 54    | 21.4%  |
|                                                                                                         |      |        |       |      |      |       |        |
| Total (95% CI)                                                                                          |      |        | 65    |      |      | 64    | 100.0% |
| Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.50, df = 1 (P = 0.48); I <sup>2</sup> = 0% |      |        |       |      |      |       |        |

Test for overall effect: Z = 1.82 (P = 0.07)





van Zanten et al. Critical Care (2015) 19:294

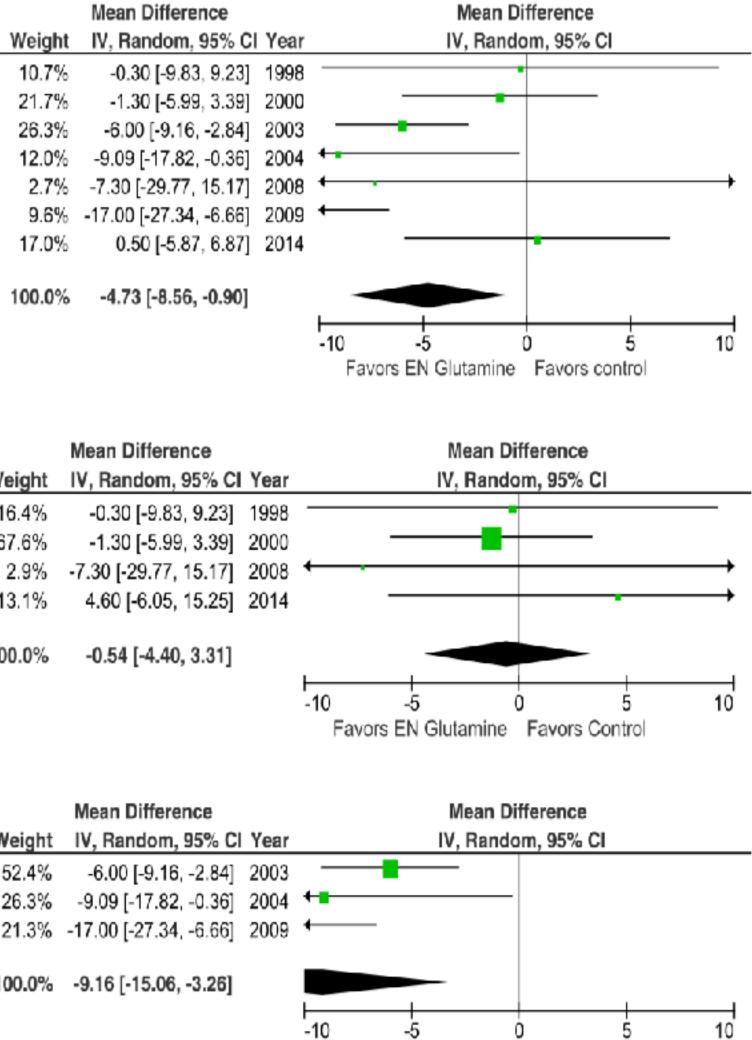
#### Hospital LOS, all studies

|                                   | Entera    | al Glutan     | nine        | C        |                        |       |
|-----------------------------------|-----------|---------------|-------------|----------|------------------------|-------|
| Study or Subgroup                 | Mean      | SD            | Total       | Mean     | SD                     | Total |
| Houdijk                           | 32.7      | 17.1          | 35          | 33       | 23.8                   | 37    |
| Brantley                          | 19.5      | 8.8           | 31          | 20.8     | 11.5                   | 41    |
| Zhou                              | 67        | 4             | 20          | 73       | 6                      | 20    |
| Peng                              | 46.59     | 12.98         | 25          | 55.68    | 17.36                  | 23    |
| McQuiggan                         | 32        | 13.6          | 10          | 39.3     | 33.6                   | 10    |
| Pattanshetti                      | 22.73     | 9.13          | 15          | 39.73    | 18.27                  | 15    |
| van Zanten                        | 38.2      | 28.9          | 152         | 37.7     | 27.5                   | 149   |
| Total (95% Cl)                    |           |               | 288         |          |                        | 295   |
| Heteroceneity: Tau <sup>2</sup> = | 11.91: Cł | $ni^2 = 12.5$ | 0. $df = 6$ | 3(P = 0) | .05): l <sup>2</sup> = | = 52% |

neterogeneity:  $1au^2 = 11.91$ ;  $Chl^2 = 12.50$ , dl = 0 (P = 0.05),  $l^2 = 52\%$ Test for overall effect: Z = 2.42 (P = 0.02)

#### Hospital LOS, trauma subgroup analysis

|                                                                     | EN G     | alutam             | ine   | С    |      |       |     |  |
|---------------------------------------------------------------------|----------|--------------------|-------|------|------|-------|-----|--|
| Study or Subgroup                                                   | Mean     | SD                 | Total | Mean | SD   | Total | We  |  |
| Houdijk                                                             | 32.7     | 17.1               | 35    | 33   | 23.8 | 37    | 16  |  |
| Brantley                                                            | 19.5     | 8.8                | 31    | 20.8 | 11.5 | 41    | 67  |  |
| McQuiggan                                                           | 32       | 13.6               | 10    | 39.3 | 33.6 | 10    | 2   |  |
| van Zanten                                                          | 44.4     | 31.2               | 55    | 39.8 | 25.3 | 54    | 13  |  |
| Total (95% CI)                                                      |          |                    | 131   |      |      | 142   | 100 |  |
| Heterogeneity: Tau² = 0.00; Chi² = 1.35, df = 3 (P = 0.72); l² = 0% |          |                    |       |      |      |       |     |  |
| Test for everall effect:                                            | 7 - 0.27 | $(\mathbf{D} - 0)$ | 79)   |      |      |       |     |  |


Test for overall effect: Z = 0.27 (P = 0.78)

#### Hospital LOS, burns subgroup analysis

|                                                                                                           | EN (     | Glutami | ne    | C     | ontrol |       |    |  |
|-----------------------------------------------------------------------------------------------------------|----------|---------|-------|-------|--------|-------|----|--|
| Study or Subgroup                                                                                         | Mean     | SD      | Total | Mean  | SD     | Total | We |  |
| Zhou                                                                                                      | 67       | 4       | 20    | 73    | 6      | 20    | 5  |  |
| Peng                                                                                                      | 46.59    | 12.98   | 25    | 55.68 | 17.36  | 23    | 2  |  |
| Pattanshetti                                                                                              | 22.73    | 9.13    | 15    | 39.73 | 18.27  | 15    | 2  |  |
| Total (95% CI)                                                                                            |          |         | 60    |       |        | 58    | 10 |  |
| Heterogeneity: Tau <sup>2</sup> = 14.70; Chi <sup>2</sup> = 4.19, df = 2 (P = 0.12); l <sup>2</sup> = 52% |          |         |       |       |        |       |    |  |
| Test for overall effect: 2                                                                                | Z = 3.04 | (P = 0. | 002)  | -     |        |       |    |  |



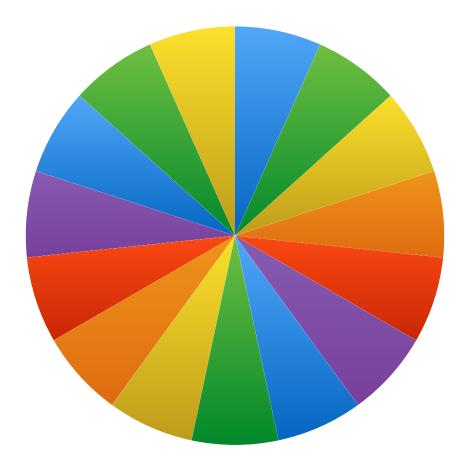
## **Meta-Analysis Enteral Glutamine**



Favors EN Glutamine Favors Control

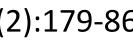





- ٠ patients.
- No effects on infectious morbidity or ICU LOS were observed. •
- Hospital LOS was significantly reduced in critically ill and burn patients but not in trauma patients. •
- However, the results of our meta-analysis are based mainly on smaller, single-center studies, and two recent ۲ multicenter trials have suggested potential harm of GLN.
- Therefore, enteral GLN supplementation cannot be recommended for critically ill patients. ٠
- In burn patients, larger studies are warranted, as our observations of a beneficial effect are based on a small • number of patients. Such a trial is currently underway worldwide (citation: see Clinical trials. gov ID **#NCT00985205).**



Enteral GLN given in conjunction with EN support does not confer significant reductions in hospital mortality among critically ill patients, including trauma patients. However, it may reduce hospital mortality in burn




# 15 reasons to doubt the glutamine deficiency hypothesis



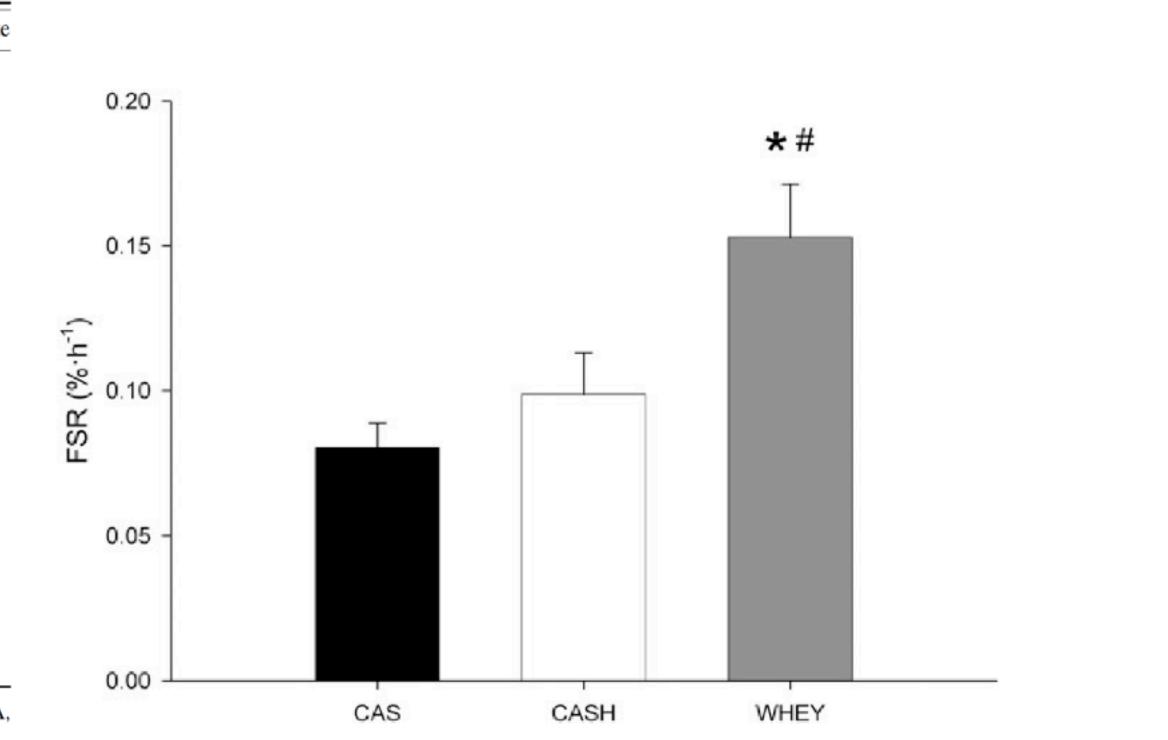


**Too simple concept** Low plasma levels are inconsistent **Sometimes high baseline levels** No correlation disease severity Supplementation: no reduction endogenous production **RCTs show harm** High baseline glutamine associated with harm **Conversion to citrulline and arginine** No benefits in meta-analyses High-discharge glutamine associated with 1-year mortality Interaction with renal function Larger increase from baseline higher mortality **Benefits only from older trials Benefits only from single center trials** Low baseline associated with lower mortality



## In healthy elderly men whey protein is better ACADEMY absorbed and leads to greater muscle synthetic response

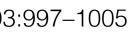
|                   | Whey | Casein | Casein hydrolysate |
|-------------------|------|--------|--------------------|
| Alanine (g)       | 1.0  | 0.6    | 0.6                |
| Arginine (g)      | 0.5  | 0.7    | 0.7                |
| Aspartic acid (g) | 2.3  | 1.3    | 1.3                |
| Cysteine (g)      | 0.7  | 0.1    | 0.1                |
| Glutamic acid (g) | 3.2  | 4.1    | 4.1                |
| Glycine (g)       | 0.4  | 0.3    | 0.3                |
| Histidine (g)     | 0.4  | 0.5    | 0.5                |
| Isoleucine (g)    | 1.2  | 1.1    | 1.1                |
| Leucine (g)       | 2.5  | 1.7    | 1.7                |
| Lysine (g)        | 2.1  | 1.4    | 1.4                |
| Methionine (g)    | 0.4  | 0.5    | 0.5                |
| Phenylalanine (g) | 0.7  | 0.9    | 0.9                |
| Proline (g)       | 0.7  | 2.1    | 2.1                |
| Serine (g)        | 0.7  | 1.3    | 1.3                |
| Threonine (g)     | 0.9  | 0.8    | 0.8                |
| Tryptophan (g)    | 0.5  | 0.2    | 0.2                |
| Tyrosine (g)      | 0.8  | 1.1    | 1.1                |
| Valine (g)        | 1.0  | 1.3    | 1.3                |
| Total AA (g)      | 20.0 | 20.0   | 20.0               |
| Total NEAA (g)    | 10.7 | 12.1   | 12.1               |
| Total EAA (g)     | 9.3  | 7.9    | 7.9                |


Amino acid composition of the proteins<sup>1</sup>

<sup>1</sup> Amounts are shown in g per 20 g protein. AA, amino acids; EAA, essential AA; NEAA, non-EAA.

Whey protein is more effective than casein and casein hydrolysate at promoting postprandial muscle protein accretion in healthy older men. The greater muscle protein synthetic response to whey ingestion is likely attributable to both its faster digestion and absorption kinetics and higher leucine content, which thereby further increases the postprandial rise in plasma leucine concentrations.

No ICU data



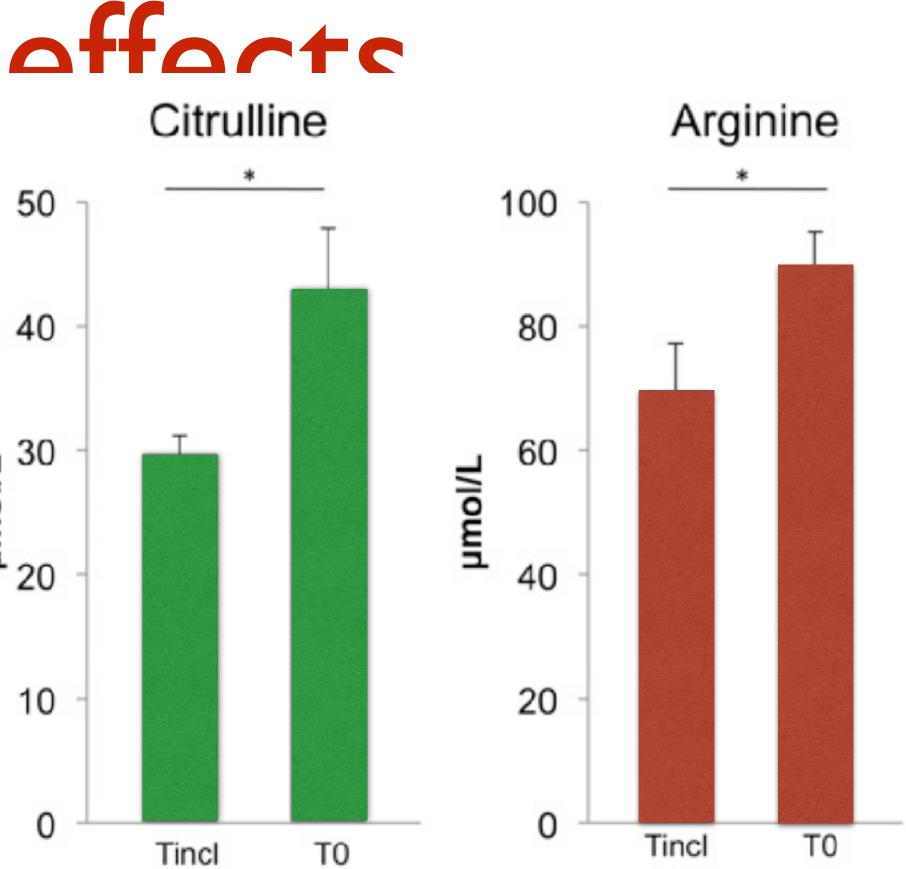



Pennings, Van Loon et al. Am J Clin Nutr 2011;93:997–1005










# Non-controlled side

Mean (SEM) plasma concentrations of glutamine, citrulline, and arginine at Tincl and after the administration of intravenous 0.5 g alanyl-glutamine/ kg per day just before TO (n = 7). Student's t test was used to determine significant differences in amino acid concentrations between Tincl and TO. \*P , 0.05. Tincl, time of inclusion; TO, start of the tracer infusion.

This content may not be amended, modified or commercially exploited without prior written consent





Buijs N et al. Am J Clin Nutr 2014;100:1385–91.



# Timing and arginine

### Pre/Peri-operatively Reduction in infections p < 0.0001

|                                      | argini                  | ne      | stand     | ard      |                         | Risk Ratio          |      | Risk Ratio                                                |
|--------------------------------------|-------------------------|---------|-----------|----------|-------------------------|---------------------|------|-----------------------------------------------------------|
| Study or Subgroup                    | Events                  | Total   | Events    | Total    | Weight                  | M-H, Random, 95% CI | Year | M-H, Random, 95% Cl                                       |
| Daly 1990                            | 10                      | 16      | 9         | 14       | 6.2%                    | 0.97 [0.56, 1.68]   | 1990 |                                                           |
| Daly 1992                            | 5                       | 41      | 13        | 44       | 2.9%                    | 0.41 [0.16, 1.06]   | 1992 |                                                           |
| Wachtler                             | 5                       | 20      | 5         | 20       | 2.3%                    | 1.00 [0.34, 2.93]   | 1995 |                                                           |
| Daly 1995                            | 3                       | 30      | 9         | 30       | 1.9%                    | 0.33 [0.10, 1.11]   | 1995 | ·                                                         |
| Schilling                            | 3                       | 14      | 6         | 14       | 2.0%                    | 0.50 [0.15, 1.61]   | 1996 |                                                           |
| Braga 1996                           | 2                       | 20      | 3         | 20       | 1.0%                    | 0.67 [0.12, 3.57]   | 1996 |                                                           |
| Senkal 1997                          | 17                      | 77      | 24        | 77       | 6.4%                    | 0.71 [0.41, 1.21]   | 1997 | +                                                         |
| McCarter 1998                        | 9                       | 27      | 2         | 11       | 1.5%                    | 1.83 [0.47, 7.16]   | 1998 |                                                           |
| Braga 1999                           | 14                      | 102     | 31        | 104      | 5.9%                    | 0.46 [0.26, 0.81]   | 1999 |                                                           |
| Senkal 1999                          | 10                      | 78      | 18        | 76       | 4.4%                    | 0.54 [0.27, 1.10]   | 1999 |                                                           |
| Snyderman                            | 19                      | 82      | 19        | 47       | 6.5%                    | 0.57 [0.34, 0.97]   | 1999 |                                                           |
| Gianotti 2000                        | 6                       | 71      | 11        | 73       | 2.9%                    | 0.56 [0.22, 1.44]   | 2000 |                                                           |
| Tepaske 2001                         | 4                       | 23      | 12        | 22       | 2.7%                    | 0.32 [0.12, 0.84]   | 2001 |                                                           |
| Jiang 2001                           | 0                       | 60      | 2         | 58       | 0.3%                    | 0.19 [0.01, 3.94]   | 2001 | ·                                                         |
| Braga 2002 (Surgery)                 | 11                      | 100     | 16        | 50       | 4.6%                    | 0.34 [0.17, 0.68]   | 2002 |                                                           |
| DeLuis 2002                          | 5                       | 23      | 4         | 24       | 1.9%                    | 1.30 [0.40, 4.26]   | 2002 |                                                           |
| Braga (Arch Sx) 2002                 | 13                      | 100     | 12        | 50       | 4.4%                    | 0.54 [0.27, 1.10]   | 2002 |                                                           |
| Gianotti 2002                        | 30                      | 203     | 31        | 102      | 7.8%                    | 0.49 [0.31, 0.76]   | 2002 |                                                           |
| De Luis                              | 2                       | 45      | 4         | 45       | 1.1%                    | 0.50 [0.10, 2.59]   | 2004 | · · · · · · · · · · · · · · · · · · ·                     |
| Farreras                             | 2                       | 30      | 9         | 30       | 1.3%                    | 0.22 [0.05, 0.94]   | 2005 | ·                                                         |
| Lobo                                 | 24                      | 54      | 24        | 54       | 8.2%                    | 1.00 [0.66, 1.52]   | 2006 | -                                                         |
| Tepaske 2007                         | 9                       | 46      | 12        | 24       | 4.4%                    | 0.39 [0.19, 0.80]   | 2007 |                                                           |
| Giger                                | 7                       | 31      | 10        | 15       | 4.1%                    | 0.34 [0.16, 0.71]   | 2007 |                                                           |
| de Luis                              | 2                       | 35      | 2         | 37       | 0.8%                    | 1.06 [0.16, 7.10]   | 2007 |                                                           |
| Klek (Ann Surg)                      | 13                      | 52      | 15        | 53       | 5.1%                    | 0.88 [0.47, 1.67]   | 2008 |                                                           |
| Klek                                 | 25                      | 97      | 28        | 99       | 7.5%                    | 0.91 [0.57, 1.44]   | 2008 |                                                           |
| Okamoto                              | 2                       | 30      | 8         | 30       | 1.3%                    | 0.25 [0.06, 1.08]   | 2009 | ←                                                         |
| Celik                                | 1                       | 25      | 7         | 25       | 0.7%                    | 0.14 [0.02, 1.08]   | 2009 | •                                                         |
| Total (95% CI)                       |                         | 1532    |           | 1248     | 100.0%                  | 0.59 [0.50, 0.70]   |      | •                                                         |
| Total events                         | 253                     |         | 346       |          |                         |                     |      |                                                           |
| Heterogeneity: Tau <sup>2</sup> = 0. | .05; Chi <sup>2</sup> : | = 36.48 | , df = 27 | (P = 0.1 | 1); I <sup>2</sup> = 26 | %                   |      |                                                           |
| Test for overall effect: Z           |                         |         |           |          |                         |                     |      | 0.1 0.2 0.5 1 2 5 10<br>Favours arginine Favours standard |



#### ICU

No reduction in infections p = 0.88

|                                                                                                            | Diets wih Arg                                                                                             | inine      | standa     | ard                |            | Risk Ratio          |      | Risk Ratio                        |  |  |  |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------|------------|--------------------|------------|---------------------|------|-----------------------------------|--|--|--|
| Study or Subgroup                                                                                          | Events                                                                                                    | Total      | Events     | Total              | Weight     | M-H, Random, 95% CI | Year | M-H, Random, 95% Cl               |  |  |  |
| 1.2.1 High Quality Studies (8+)                                                                            |                                                                                                           |            |            |                    |            |                     |      |                                   |  |  |  |
| Bower                                                                                                      | 86                                                                                                        | 153        | 90         | 143                | 15.1%      | 0.89 [0.74, 1.08]   | 1995 | -+                                |  |  |  |
| Kudsk                                                                                                      | 5                                                                                                         | 16         | 11         | 17                 | 3.1%       | 0.48 [0.22, 1.08]   | 1996 |                                   |  |  |  |
| Capparos                                                                                                   | 64                                                                                                        | 130        | 37         | 105                | 10.8%      | 1.40 [1.02, 1.91]   | 2001 |                                   |  |  |  |
| Conejero                                                                                                   | 11                                                                                                        | 43         | 17         | 33                 | 4.9%       | 0.50 [0.27, 0.91]   | 2002 |                                   |  |  |  |
| Dent                                                                                                       | 57                                                                                                        | 87         | 52         | 83                 | 13.7%      | 1.05 [0.83, 1.31]   | 2003 | +                                 |  |  |  |
| Kieft 2005                                                                                                 | 130                                                                                                       | 302        | 123        | 295                | 15.1%      | 1.03 [0.86, 1.24]   | 2005 | +                                 |  |  |  |
| Tsuei                                                                                                      | 8                                                                                                         | 13         | 6          | 11                 | 4.0%       | 1.13 [0.57, 2.25]   | 2005 | _ <b>-</b>                        |  |  |  |
| Wibbenmeyer                                                                                                | 9                                                                                                         | 12         | 7          | 11                 | 5.6%       | 1.18 [0.68, 2.05]   | 2006 | - <u>+</u>                        |  |  |  |
| Subtotal (95% CI)                                                                                          |                                                                                                           | 756        |            | 698                | 72.3%      | 0.99 [0.83, 1.17]   |      | •                                 |  |  |  |
| Total events                                                                                               | 370                                                                                                       |            | 343        |                    |            |                     |      |                                   |  |  |  |
| Heterogeneity: Tau <sup>2</sup> =                                                                          | 0.03; Chi <sup>2</sup> = 14.                                                                              | 72, df = 1 | 7 (P = 0.0 | )4);  ² =          | 52%        |                     |      |                                   |  |  |  |
| Test for overall effect:                                                                                   | Z = 0.16 (P = 0.                                                                                          | 87)        |            |                    |            |                     |      |                                   |  |  |  |
|                                                                                                            |                                                                                                           |            |            |                    |            |                     |      |                                   |  |  |  |
| 1.2.2 Low Quality Stu                                                                                      |                                                                                                           |            |            |                    |            |                     |      |                                   |  |  |  |
| Moore                                                                                                      | 9                                                                                                         | 51         | 10         | 47                 | 3.1%       | 0.83 [0.37, 1.86]   | 1994 |                                   |  |  |  |
| Brown                                                                                                      | 3                                                                                                         | 19         | 10         | 18                 | 1.8%       | 0.28 [0.09, 0.87]   | 1995 | ·                                 |  |  |  |
| Engel                                                                                                      | 6                                                                                                         | 18         | 5          | 18                 | 2.2%       | 1.20 [0.45, 3.23]   |      |                                   |  |  |  |
| Rodrigo                                                                                                    | 5                                                                                                         | 16         | 3          | 14                 | 1.5%       | 1.46 [0.42, 5.03]   | 1997 |                                   |  |  |  |
| Mendez                                                                                                     | 19                                                                                                        | 22         | 12         | 21                 | 8.3%       | 1.51 [1.01, 2.27]   |      |                                   |  |  |  |
| Galban                                                                                                     | 39                                                                                                        | 89         | 44         | 87                 | 10.8%      | 0.87 [0.63, 1.19]   | 2000 | -1                                |  |  |  |
| Subtotal (95% CI)                                                                                          |                                                                                                           | 215        |            | 205                | 27.7%      | 0.97 [0.65, 1.45]   |      | <b>•</b>                          |  |  |  |
| Total events                                                                                               | 81                                                                                                        |            | 84         |                    |            |                     |      |                                   |  |  |  |
| Heterogeneity: Tau <sup>2</sup> =                                                                          | Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> = 10.91, df = 5 (P = 0.05); I <sup>2</sup> = 54% |            |            |                    |            |                     |      |                                   |  |  |  |
| Test for overall effect:                                                                                   | Z = 0.14 (P = 0.                                                                                          | 89)        |            |                    |            |                     |      |                                   |  |  |  |
| Total (95% CI)                                                                                             |                                                                                                           | 971        |            | 903                | 100.0%     | 0.99 [0.85, 1.15]   |      |                                   |  |  |  |
| Total events                                                                                               | 451                                                                                                       |            | 427        |                    |            |                     |      | 1                                 |  |  |  |
| Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> = 25.16, df = 13 (P = 0.02); l <sup>2</sup> = 48% |                                                                                                           |            |            |                    |            |                     |      |                                   |  |  |  |
| U.1 U.2 U.5 1 2 5 10                                                                                       |                                                                                                           |            |            |                    |            |                     |      |                                   |  |  |  |
| Test for subgroup diffe                                                                                    |                                                                                                           |            | 1 (P = 0   | 94) l <sup>2</sup> | = 0%       |                     |      | Favours Arginine Favours standard |  |  |  |
| reactor saugroup and                                                                                       |                                                                                                           |            | 10-0       |                    | <b>W P</b> |                     |      |                                   |  |  |  |



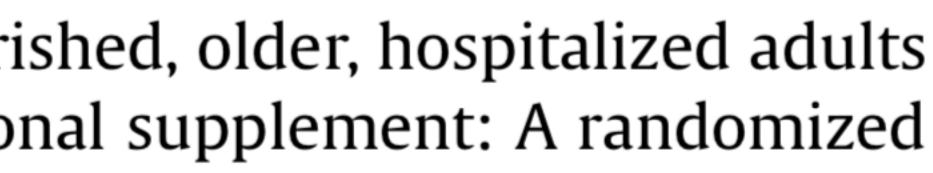


Clinical Nutrition 35 (2016) 18–26

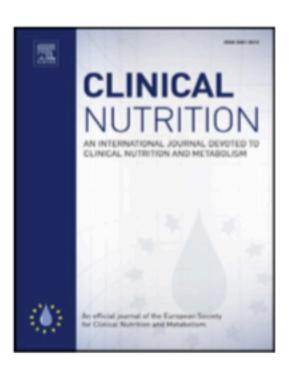


### Randomized control trials

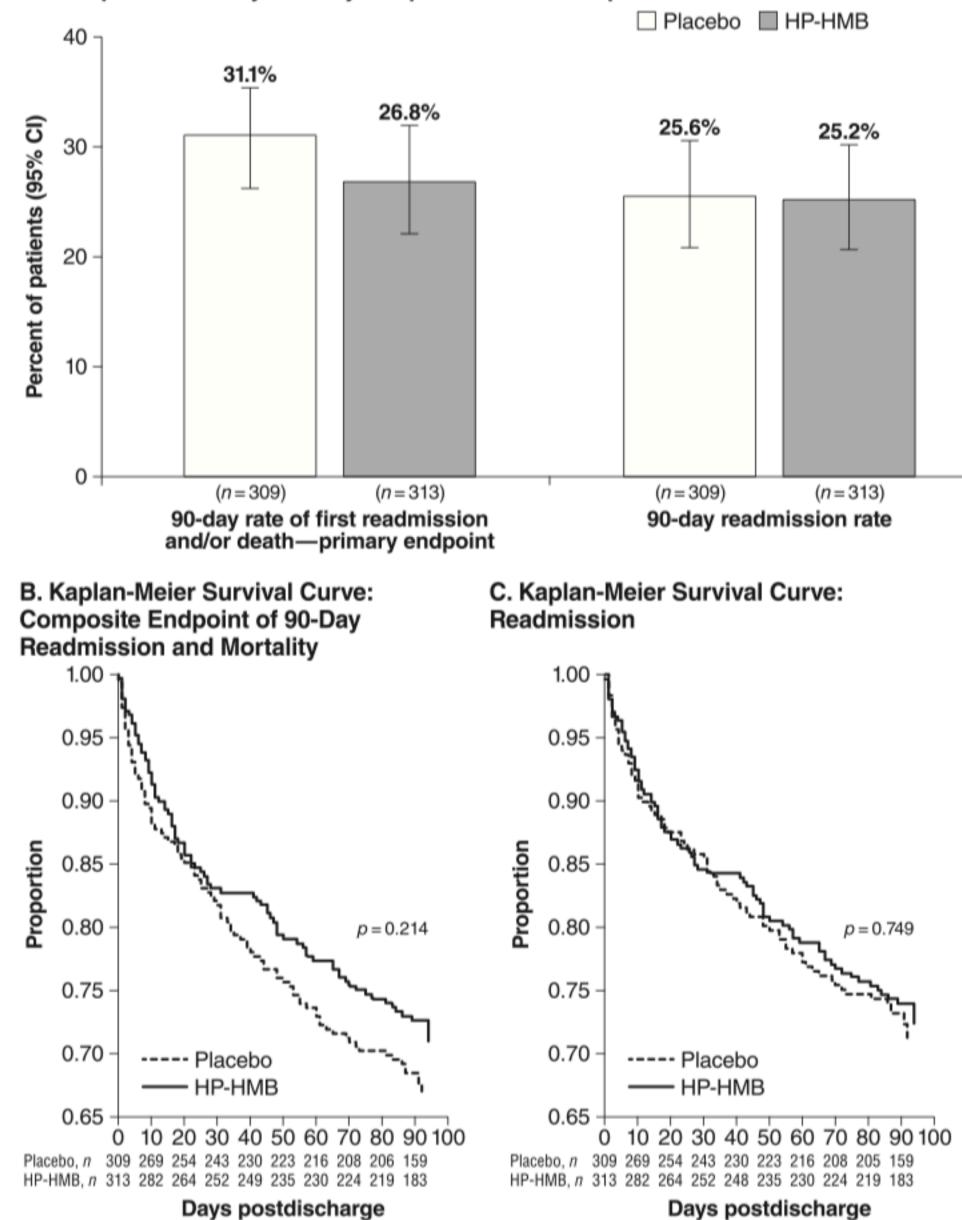
## Readmission and mortality in malnourished, older, hospitalized adults treated with a specialized oral nutritional supplement: A randomized clinical trial

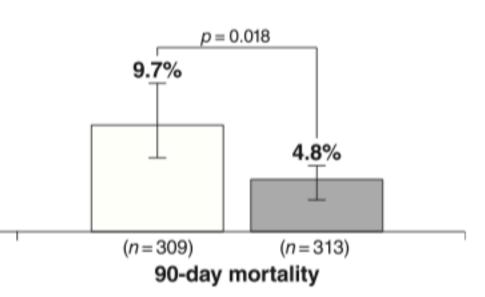

Nicolaas E. Deutz<sup>a,\*</sup>, Eric M. Matheson<sup>b</sup>, Laura E. Matarese<sup>c</sup>, Menghua Luo<sup>d</sup>, Geraldine E. Baggs<sup>d</sup>, Jeffrey L. Nelson<sup>d</sup>, Refaat A. Hegazi<sup>d</sup>, Kelly A. Tappenden<sup>e</sup>, Thomas R. Ziegler<sup>f</sup>, on behalf of the NOURISH Study Group



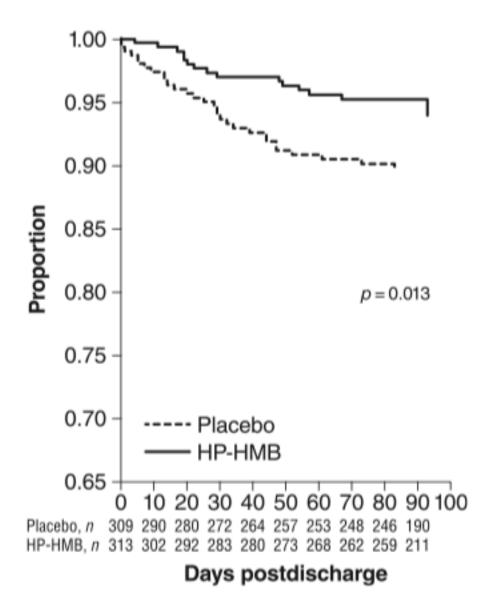

Contents lists available at ScienceDirect

**Clinical Nutrition** 


journal homepage: http://www.elsevier.com/locate/clnu






#### A. Composite Primary Efficacy Endpoint and Its Components









## **Nourish Study**

**ONS: RCT 1:1** 

**Randomization to:** 

HP-HMB nutrient-dense ready-to-drink liquid with 350 kcal, 20 g protein, 11 g fat, 44 g carbohydrate, 1.5 g calcium-HMB, 160 IU vitamin D and other essential micronutrients.

The placebo, also a ready-to drink liquid contained 48 kcal, 12 g carbohydrate, and 10 mg vitamin C, but no other macro- or micronutrients.

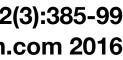




# Timing and arginine

### Pre/Peri-operatively Reduction in infections p < 0.0001

|                                      | arginine                |       | standard |          | Risk Ratio              |                     |      | Risk Ratio                                                |  |
|--------------------------------------|-------------------------|-------|----------|----------|-------------------------|---------------------|------|-----------------------------------------------------------|--|
| Study or Subgroup                    | Events                  |       | Events   | Total    |                         | M-H, Random, 95% CI | Year | M-H, Random, 95% Cl                                       |  |
| Daly 1990                            | 10                      | 16    | 9        | 14       | 6.2%                    | 0.97 [0.56, 1.68]   | 1990 | _ <del></del>                                             |  |
| Daly 1992                            | 5                       | 41    | 13       | 44       | 2.9%                    | 0.41 [0.16, 1.06]   | 1992 |                                                           |  |
| Wachtler                             | 5                       | 20    | 5        | 20       | 2.3%                    | 1.00 [0.34, 2.93]   | 1995 |                                                           |  |
| Daly 1995                            | 3                       | 30    | 9        | 30       | 1.9%                    | 0.33 [0.10, 1.11]   | 1995 | •+                                                        |  |
| Schilling                            | 3                       | 14    | 6        | 14       | 2.0%                    | 0.50 [0.15, 1.61]   | 1996 |                                                           |  |
| Braga 1996                           | 2                       | 20    | 3        | 20       | 1.0%                    | 0.67 [0.12, 3.57]   | 1996 |                                                           |  |
| Senkal 1997                          | 17                      | 77    | 24       | 77       | 6.4%                    | 0.71 [0.41, 1.21]   | 1997 |                                                           |  |
| McCarter 1998                        | 9                       | 27    | 2        | 11       | 1.5%                    | 1.83 [0.47, 7.16]   | 1998 |                                                           |  |
| Braga 1999                           | 14                      | 102   | 31       | 104      | 5.9%                    | 0.46 [0.26, 0.81]   | 1999 |                                                           |  |
| Senkal 1999                          | 10                      | 78    | 18       | 76       | 4.4%                    | 0.54 [0.27, 1.10]   | 1999 |                                                           |  |
| Snyderman                            | 19                      | 82    | 19       | 47       | 6.5%                    | 0.57 [0.34, 0.97]   | 1999 |                                                           |  |
| Gianotti 2000                        | 6                       | 71    | 11       | 73       | 2.9%                    | 0.56 [0.22, 1.44]   | 2000 |                                                           |  |
| Tepaske 2001                         | 4                       | 23    | 12       | 22       | 2.7%                    | 0.32 [0.12, 0.84]   | 2001 |                                                           |  |
| Jiang 2001                           | 0                       | 60    | 2        | 58       | 0.3%                    | 0.19 [0.01, 3.94]   | 2001 | ·                                                         |  |
| Braga 2002 (Surgery)                 | 11                      | 100   | 16       | 50       | 4.6%                    | 0.34 [0.17, 0.68]   | 2002 |                                                           |  |
| DeLuis 2002                          | 5                       | 23    | 4        | 24       | 1.9%                    | 1.30 [0.40, 4.26]   | 2002 | <u> </u>                                                  |  |
| Braga (Arch Sx) 2002                 | 13                      | 100   | 12       | 50       | 4.4%                    | 0.54 [0.27, 1.10]   | 2002 |                                                           |  |
| Gianotti 2002                        | 30                      | 203   | 31       | 102      | 7.8%                    | 0.49 [0.31, 0.76]   | 2002 |                                                           |  |
| De Luis                              | 2                       | 45    | 4        | 45       | 1.1%                    | 0.50 [0.10, 2.59]   | 2004 | ·                                                         |  |
| Farreras                             | 2                       | 30    | 9        | 30       | 1.3%                    | 0.22 [0.05, 0.94]   | 2005 | ←                                                         |  |
| Lobo                                 | 24                      | 54    | 24       | 54       | 8.2%                    | 1.00 [0.66, 1.52]   | 2006 | -                                                         |  |
| Tepaske 2007                         | 9                       | 46    | 12       | 24       | 4.4%                    | 0.39 [0.19, 0.80]   | 2007 |                                                           |  |
| Giger                                | 7                       | 31    | 10       | 15       | 4.1%                    | 0.34 [0.16, 0.71]   | 2007 |                                                           |  |
| de Luis                              | 2                       | 35    | 2        | 37       | 0.8%                    | 1.06 [0.16, 7.10]   | 2007 |                                                           |  |
| Klek (Ann Surg)                      | 13                      | 52    | 15       | 53       | 5.1%                    | 0.88 [0.47, 1.67]   | 2008 |                                                           |  |
| Klek                                 | 25                      | 97    | 28       | 99       | 7.5%                    | 0.91 [0.57, 1.44]   | 2008 |                                                           |  |
| Okamoto                              | 2                       | 30    | 8        | 30       | 1.3%                    | 0.25 [0.06, 1.08]   | 2009 | ←                                                         |  |
| Celik                                | 1                       | 25    | 7        | 25       | 0.7%                    | 0.14 [0.02, 1.08]   | 2009 | •                                                         |  |
| Total (95% CI)                       |                         | 1532  |          | 1248     | 100.0%                  | 0.59 [0.50, 0.70]   |      | •                                                         |  |
| Total events                         | 253                     |       | 346      |          |                         |                     |      |                                                           |  |
| Heterogeneity: Tau <sup>2</sup> = 0. | .05; Chi <sup>2</sup> = | 36.48 | df= 27   | (P = 0.1 | 1); l <sup>2</sup> = 26 | %                   |      |                                                           |  |
| Test for overall effect: Z           |                         |       |          |          |                         |                     |      | 0.1 0.2 0.5 1 2 5 10<br>Favours arginine Favours standard |  |



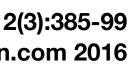

#### ICU

No reduction in infections p = 0.88

|                                                                                                            | Diets wih Arg                | jinine     | standa     | ard                |        | Risk Ratio          |      | Risk Ratio                        |  |  |
|------------------------------------------------------------------------------------------------------------|------------------------------|------------|------------|--------------------|--------|---------------------|------|-----------------------------------|--|--|
| Study or Subgroup                                                                                          | Events                       | Total      | Events     | Total              | Weight | M-H, Random, 95% CI | Year | M-H, Random, 95% CI               |  |  |
| 1.2.1 High Quality Studies (8+)                                                                            |                              |            |            |                    |        |                     |      |                                   |  |  |
| Bower                                                                                                      | 86                           | 153        | 90         | 143                | 15.1%  | 0.89 [0.74, 1.08]   | 1995 | -+                                |  |  |
| Kudsk                                                                                                      | 5                            | 16         | 11         | 17                 | 3.1%   | 0.48 [0.22, 1.08]   | 1996 |                                   |  |  |
| Capparos                                                                                                   | 64                           | 130        | 37         | 105                | 10.8%  | 1.40 [1.02, 1.91]   | 2001 |                                   |  |  |
| Conejero                                                                                                   | 11                           | 43         | 17         | 33                 | 4.9%   | 0.50 [0.27, 0.91]   | 2002 |                                   |  |  |
| Dent                                                                                                       | 57                           | 87         | 52         | 83                 | 13.7%  | 1.05 [0.83, 1.31]   | 2003 | +                                 |  |  |
| Kieft 2005                                                                                                 | 130                          | 302        | 123        | 295                | 15.1%  | 1.03 [0.86, 1.24]   | 2005 | +                                 |  |  |
| Tsuei                                                                                                      | 8                            | 13         | 6          | 11                 | 4.0%   | 1.13 [0.57, 2.25]   | 2005 |                                   |  |  |
| Wibbenmeyer                                                                                                | 9                            | 12         | 7          | 11                 | 5.6%   | 1.18 [0.68, 2.05]   | 2006 | - <u>+</u>                        |  |  |
| Subtotal (95% CI)                                                                                          |                              | 756        |            | 698                | 72.3%  | 0.99 [0.83, 1.17]   |      | •                                 |  |  |
| Total events                                                                                               | 370                          |            | 343        |                    |        |                     |      |                                   |  |  |
| Heterogeneity: Tau <sup>2</sup> =                                                                          | 0.03; Chi <sup>2</sup> = 14. | 72, df =   | 7 (P = 0.0 | )4);  ² =          | 52%    |                     |      |                                   |  |  |
| Test for overall effect:                                                                                   | Z = 0.16 (P = 0.             | 87)        |            |                    |        |                     |      |                                   |  |  |
|                                                                                                            |                              |            |            |                    |        |                     |      |                                   |  |  |
| 1.2.2 Low Quality Stu                                                                                      | idies (<8)                   |            |            |                    |        |                     |      |                                   |  |  |
| Moore                                                                                                      | 9                            | 51         | 10         | 47                 | 3.1%   | 0.83 [0.37, 1.86]   | 1994 |                                   |  |  |
| Brown                                                                                                      | 3                            | 19         | 10         | 18                 | 1.8%   | 0.28 [0.09, 0.87]   | 1995 | ·                                 |  |  |
| Engel                                                                                                      | 6                            | 18         | 5          | 18                 | 2.2%   | 1.20 [0.45, 3.23]   | 1997 | <del></del>                       |  |  |
| Rodrigo                                                                                                    | 5                            | 16         | 3          | 14                 | 1.5%   | 1.46 [0.42, 5.03]   | 1997 | <del></del>                       |  |  |
| Mendez                                                                                                     | 19                           | 22         | 12         | 21                 | 8.3%   | 1.51 [1.01, 2.27]   | 1997 | <b>⊢</b> •−                       |  |  |
| Galban                                                                                                     | 39                           | 89         | 44         | 87                 | 10.8%  | 0.87 [0.63, 1.19]   | 2000 | -1                                |  |  |
| Subtotal (95% CI)                                                                                          |                              | 215        |            | 205                | 27.7%  | 0.97 [0.65, 1.45]   |      | <b>•</b>                          |  |  |
| Total events                                                                                               | 81                           |            | 84         |                    |        |                     |      |                                   |  |  |
| Heterogeneity: Tau <sup>2</sup> = 0.12; Chi <sup>2</sup> = 10.91, df = 5 (P = 0.05); l <sup>2</sup> = 54%  |                              |            |            |                    |        |                     |      |                                   |  |  |
| Test for overall effect:                                                                                   | Z = 0.14 (P = 0.             | .89)       |            |                    |        |                     |      |                                   |  |  |
| Total (95% CI)                                                                                             |                              | 971        |            | 903                | 100.0% | 0.99 [0.85, 1.15]   |      |                                   |  |  |
| Total events                                                                                               | 451                          |            | 427        |                    |        |                     |      | I                                 |  |  |
| Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> = 25.16, df = 13 (P = 0.02); l <sup>2</sup> = 48% |                              |            |            |                    |        |                     |      |                                   |  |  |
|                                                                                                            | U.1 U.2 U.5 1 2 5 10         |            |            |                    |        |                     |      |                                   |  |  |
| Test for subgroup diffe                                                                                    |                              |            | 1 (P = 0   | 94) I <sup>2</sup> | = 0%   |                     |      | Favours Arginine Favours standard |  |  |
| reación subgroup une                                                                                       | actives, on = (              | 0.00, ui - |            |                    | - 0 /0 |                     |      |                                   |  |  |








- CCPG 2015 Recommendation: Based on 5 level 1 studies and 22 level 2 studies, we do not recommend diets supplemented with arginine and other select nutrients be used for critically ill patients.
- Given the possible harm in septic patients (Bower, Ross, Bertolini) and the increased costs, the committee decided to recommend against their use in critically ill patients. Arginine ↔ Citrulline + NO



# Timing and arginine

Do not use arginine in septic ICU patients



# My suggestions

- available
- In PN consider to make a balanced AA solution as in normal PN no glutamine is available
- Do not go over recommended low dosages to do this, or consider to measure plasma glutamine levels



## Enteral glutamine supplementation is not indicated, and in normal EN around 6 grams of glutamine per liter is

# ESPEN ICU guidelines 2018

- Grade of recommendation: B strong consensus (95 % agreement)
- administered for a longer period of ten to 15 days.
- Grade of recommendation: 0 strong consensus (91 % agreement).
- should not be administered.
- Grade of recommendation: B strong consensus (92.31 % agreement)
- liver and renal failure, parenteral GLN -dipeptide shall not be administered.
- Grade of recommendation: A strong consensus (92.31 % agreement)



• Recommendation 26: In patients with burns > 20% body surface area, additional enteral doses of GLN (0.3-0.5 g/kg/d) should be administered for 10-15 days as soon as EN is commenced.

• Recommendation 27: In critically ill trauma, additional EN doses of GLN (0.2-0.3 g/kg/d) can be administered for the first five days with EN. In case of complicated wound healing it can be

Recommendation 28: In ICU patients except burn and trauma patients, additional enteral GLN

• Recommendation 29: In unstable and complex ICU patients, particularly in those suffering from