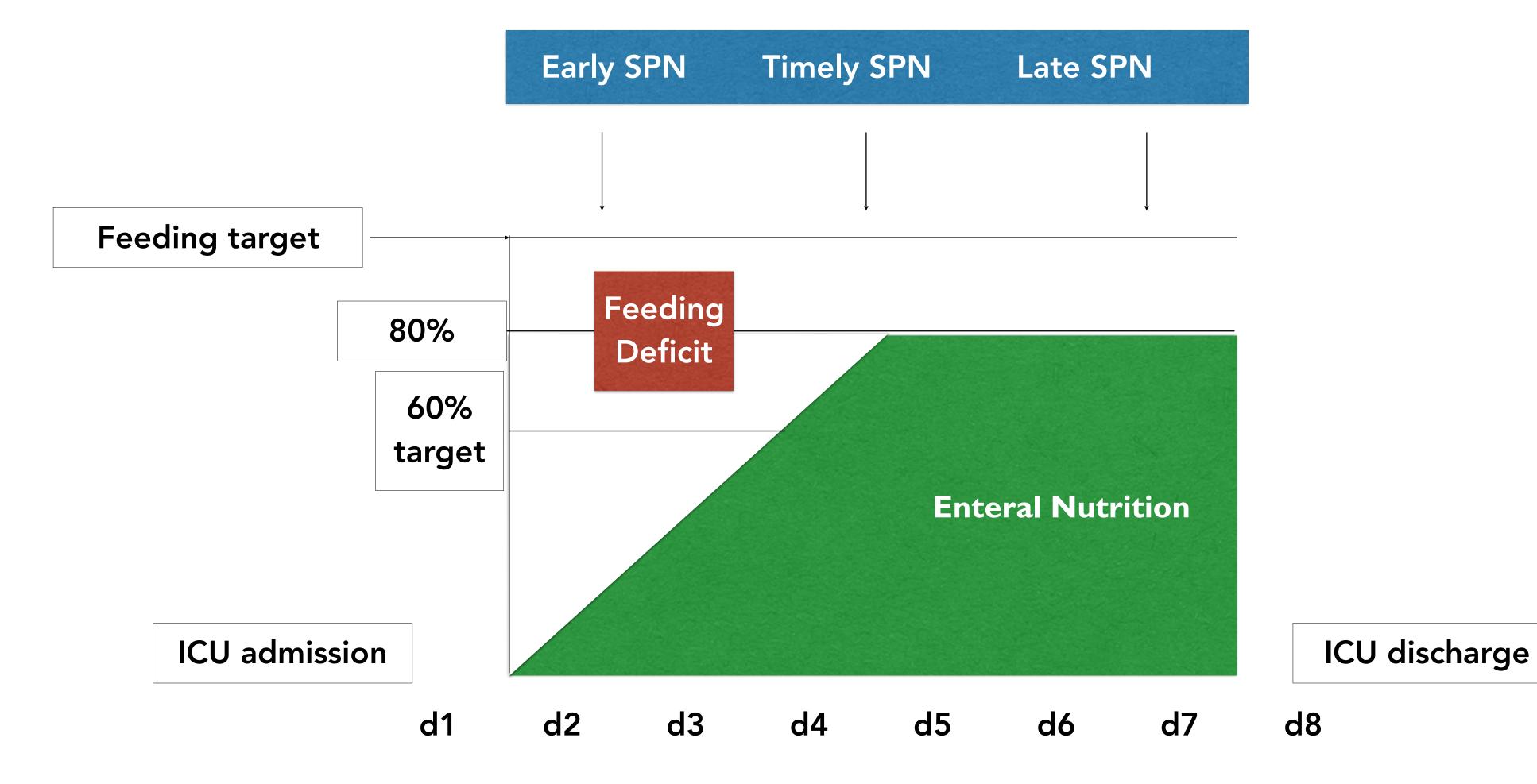


Masterclass Critical Care Nutrition 2019

How to time parenteral nutrition during critical illness?

Arthur R.H. van Zanten, MD PhD, Internist-intensivist

This content may not be amended, modified or commercially exploited without prior written consent


Gelderse Vallei Hospital, Ede, The Netherlands

E-mail: zantena@zgv.nl

Enteral Nutrition and SPN

Divergent recommendations in guidelines

All patients who are not expected to be on normal nutrition within 3d should receive PN within 24 to 48 h if EN is contraindicated or if they cannot tolerate EN

> Singer P et al. Clin Nutr. 2009; 28(4): 387-400.

SCCM / ASPEN

In patients with low or high nutrition risk, use of SPN be considered after 7-10d if unable to meet >60% of energy and protein requirements by EN alone. Initiating SPN prior to 7-10d does not improve outcomes and may be detrimental

> McClave SA et al. JPEN J Parenter Enteral Nutr. 2009;33(3):277-316.

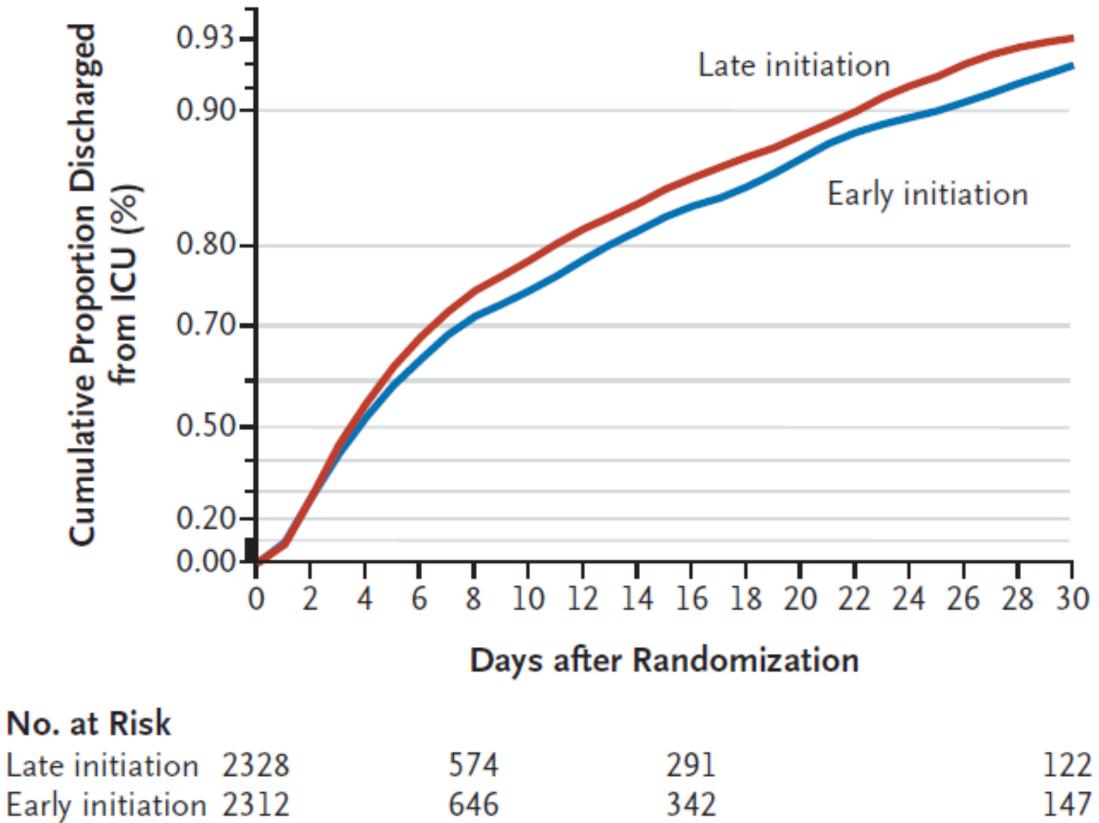
Should we use TPN to enhance energy delivery?

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Early versus Late Parenteral Nutrition in Critically Ill Adults

Michael P. Casaer, M.D., Dieter Mesotten, M.D., Ph.D., Greet Hermans, M.D., Ph.D., Pieter J. Wouters, R.N., M.Sc., Miet Schetz, M.D., Ph.D., Geert Meyfroidt, M.D., Ph.D., Sophie Van Cromphaut, M.D., Ph.D., Catherine Ingels, M.D., Philippe Meersseman, M.D., Jan Muller, M.D., Dirk Vlasselaers, M.D., Ph.D., Yves Debaveye, M.D., Ph.D., Lars Desmet, M.D., Jasperina Dubois, M.D., Aime Van Assche, M.D., Simon Vanderheyden, B.Sc., Alexander Wilmer, M.D., Ph.D., and Greet Van den Berghe, M.D., Ph.D.*



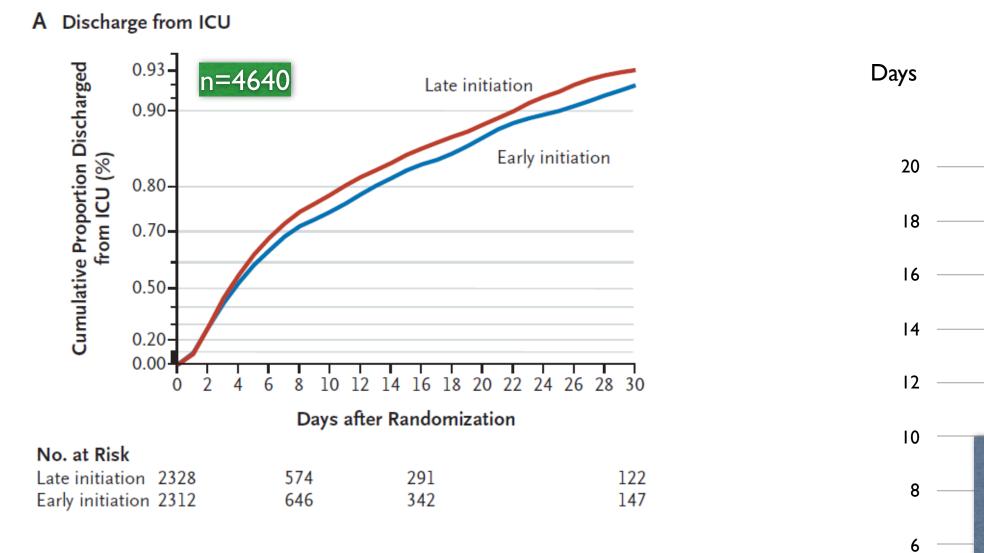
EPaNIC trial: primary end point

A Discharge from ICU

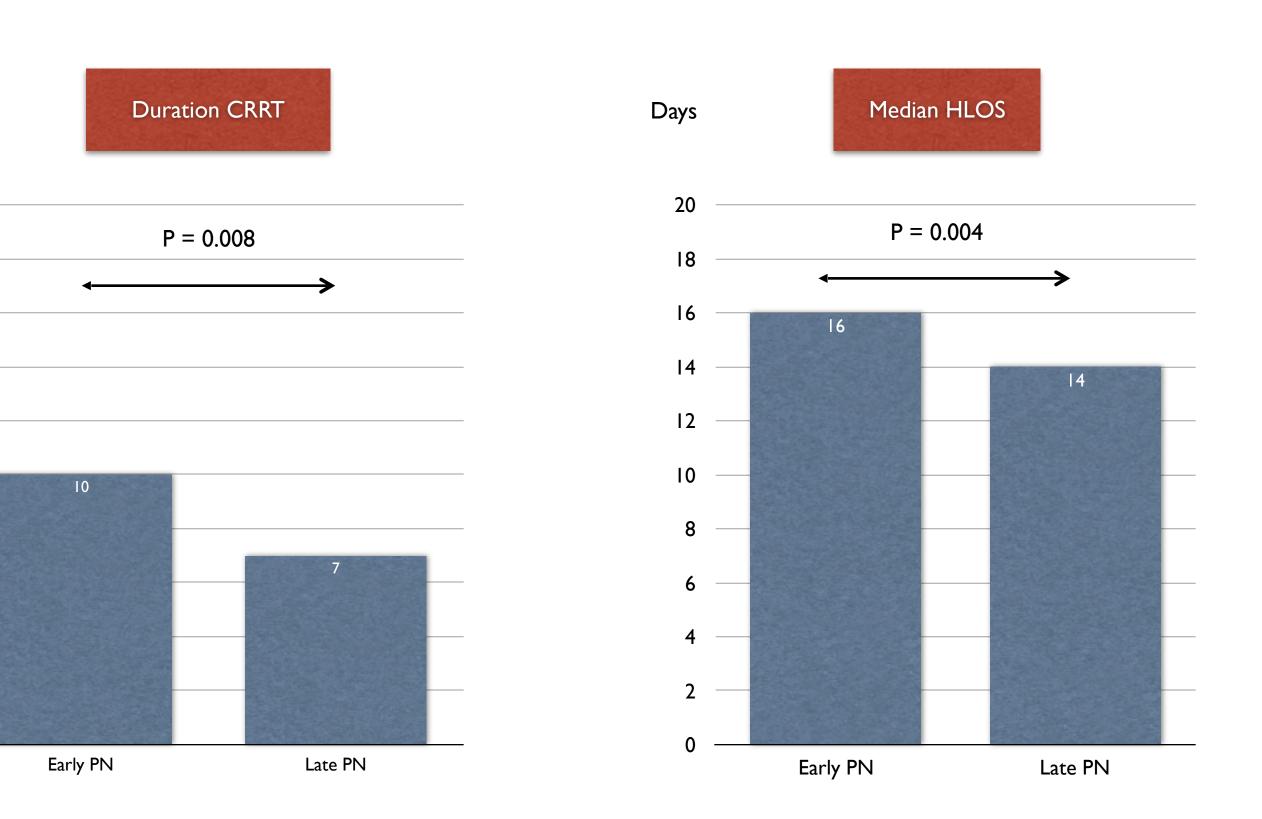
Casaer M et al. N Engl J Med 2011; 365: 506-517

Hazard ratio (95% CI) for

time to discharge alive from

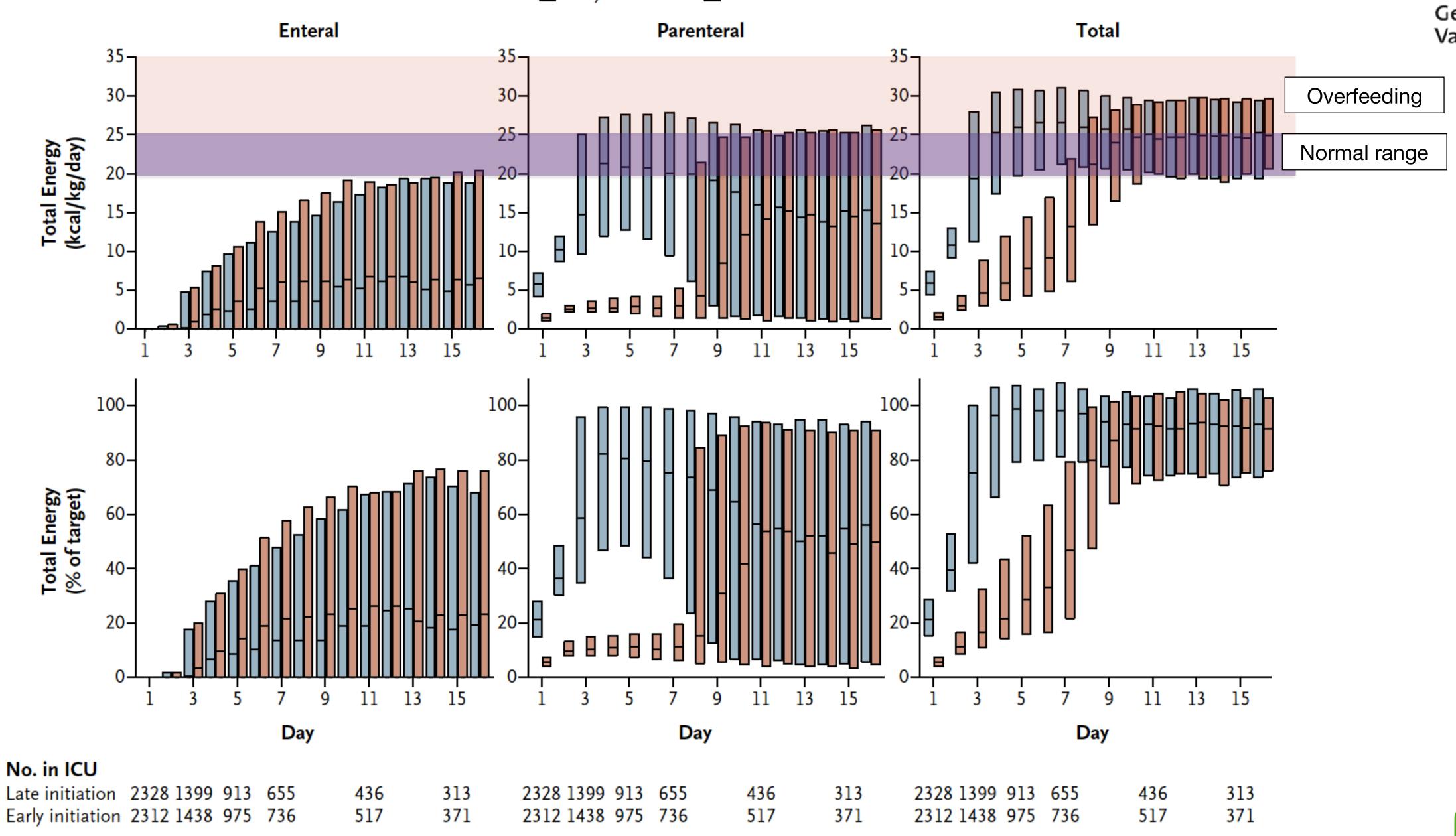

ICU 1.06 (1.00-1.13)

EPaNIC trial: primary end point

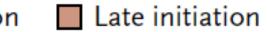


Hazard ratio (95% CI) for time to discharge alive from ICU 1.06 (1.00–1.13)

4

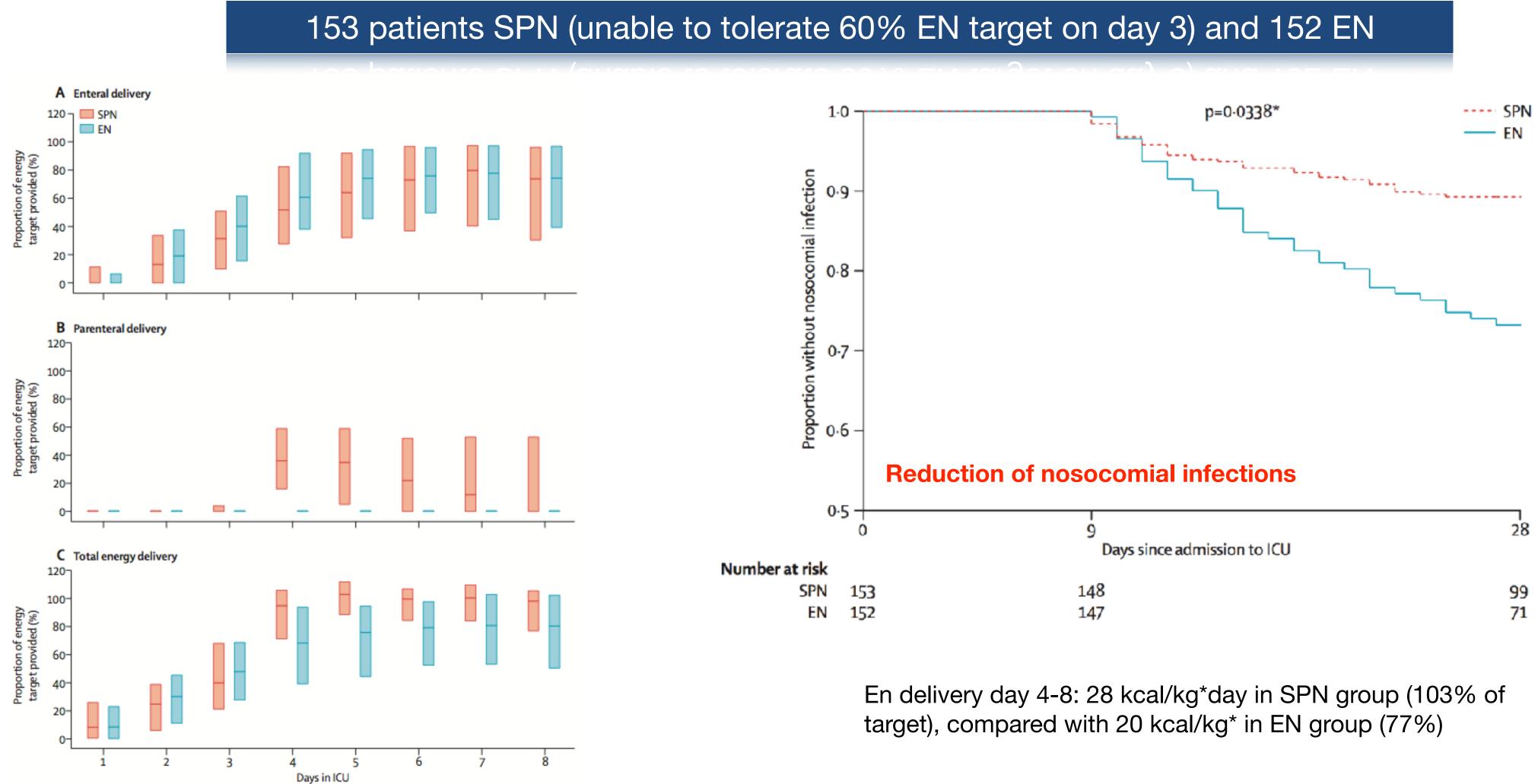

2

0



Early initiation

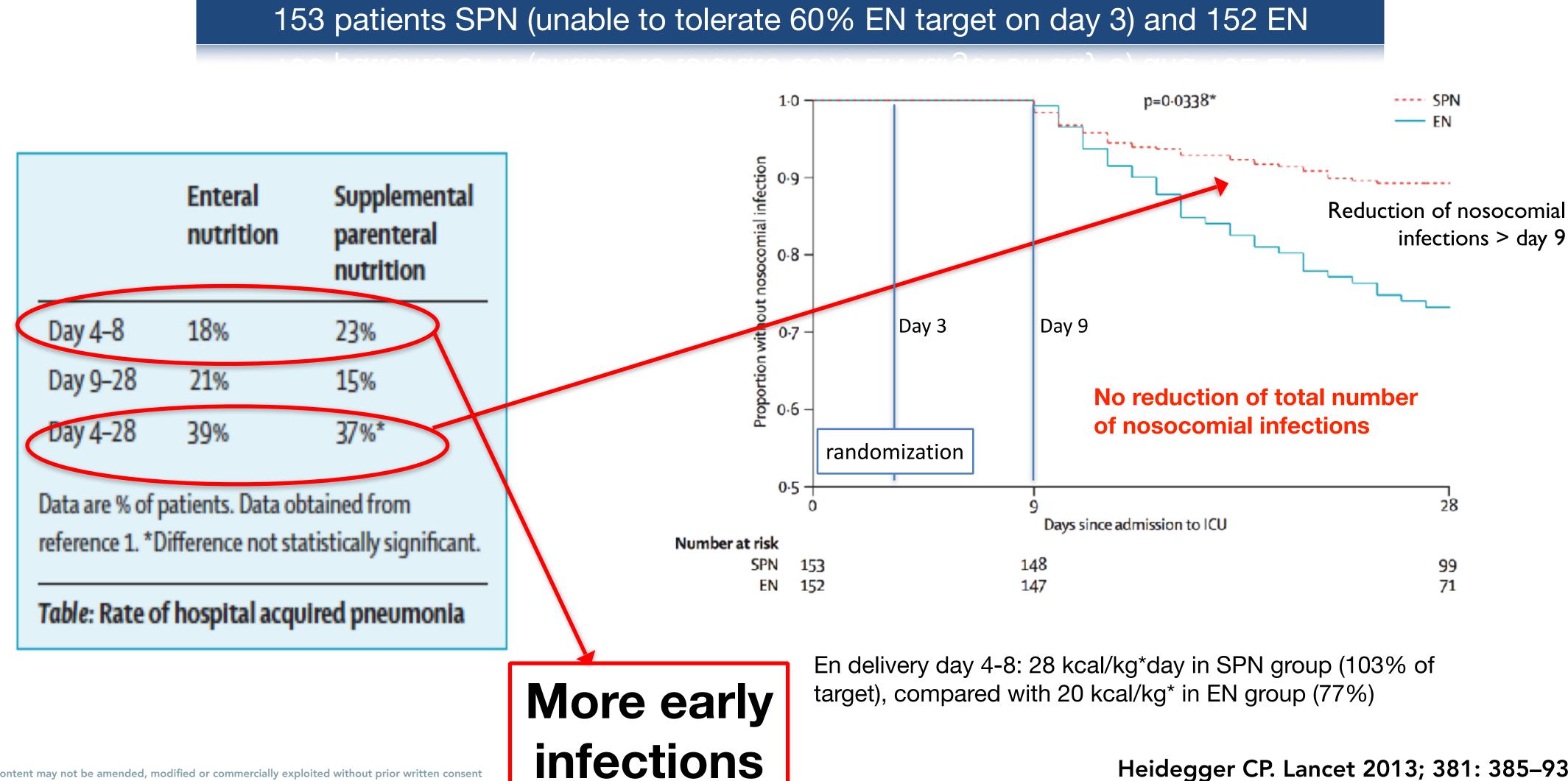
7



Casaer M et al. N Engl J Med 2011; 365: 506-517

Supplemental Parenteral Nutrition (SPN) Trial

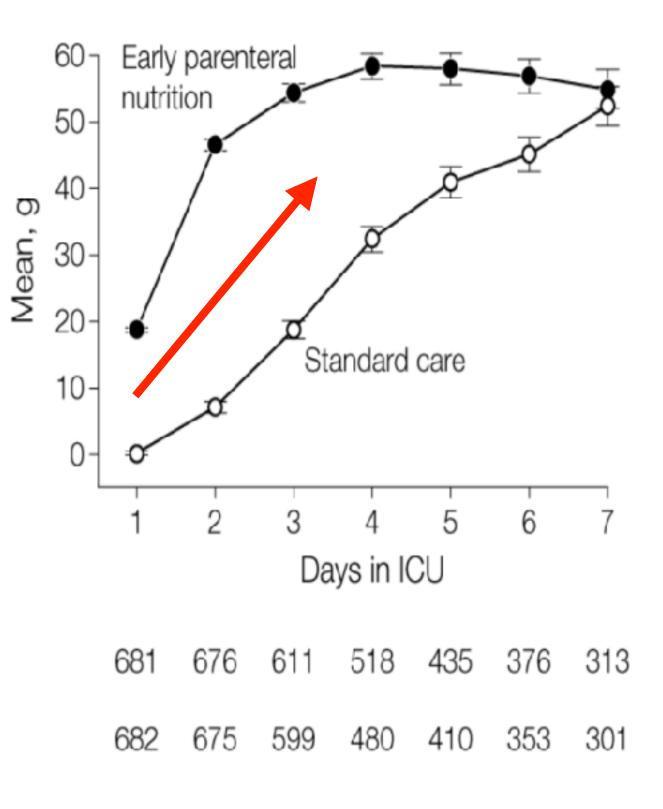
This content may not be amended, modified or commercially exploited without prior written consent


Heidegger CP. Lancet 2013; 381: 385–93

Supplemental Parenteral Nutrition (SPN) Trial



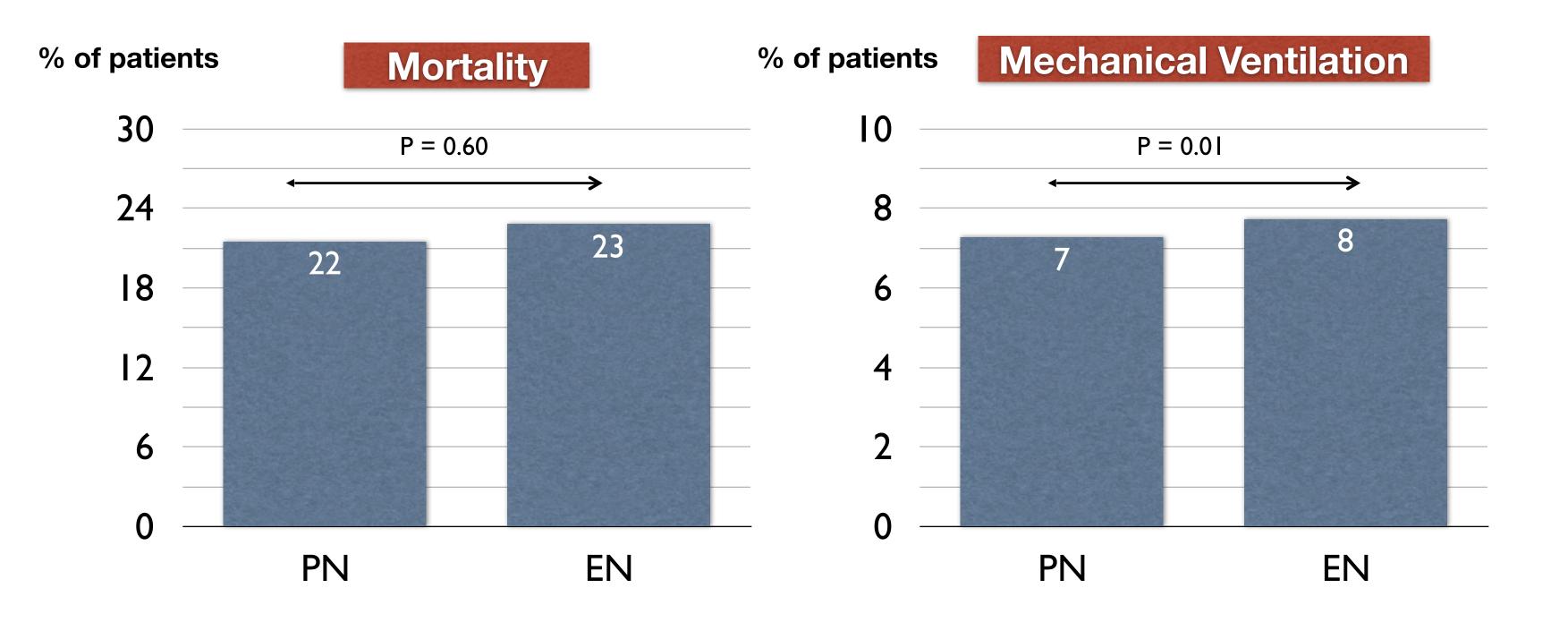
Heidegger CP. Lancet 2013; 381: 385–93


Early PN in critically ill patients with short-term relative contraindications to EEN: a randomized controlled trial

slow build-up in both groups

slow build-up in both groups

Protein received per patient by study day


Doig, ANZICS, JAMA May 2013

Early PN trial

Reduction in a few Mechanical Ventilation hours did not result in a statistically significant shortening of ICU or hospital LOS

Doig, ANZICS, JAMA May 2013

Conclusions ANZICS trial

- •
- mechanical ventilation (0.47 day), but this did not result in a statistically significant shortening of ICU or hospital LOS.
- this trial.

No significant differences in day-60 mortality or ICU infections.

Patients on early PN required significantly fewer days of invasive

No harm was attributable to the use of early parenteral nutrition in

Doig, ANZICS, JAMA May 2013

Conflicting results Early SPN

- **Epanic: Early PN negative** effects on ICU discharge survival (no long-term survival difference) & duration of organ failure
- SPN trial: no differences, effect on infections questionable
- **Anzics trial: No major** outcome differences, shorter duration of MV 0.4 day and QOL significant but not relevant, 95% of patients tolerate EN within 4.1 days

Bost et al. Annals of Intensive Care 2014, 4:31 http://www.annalsofintensivecare.com/content/4/1/31

REVIEW

Rianne BC Bost¹, Dave HT Tjan¹ and Arthur RH van Zanten^{1,2*}

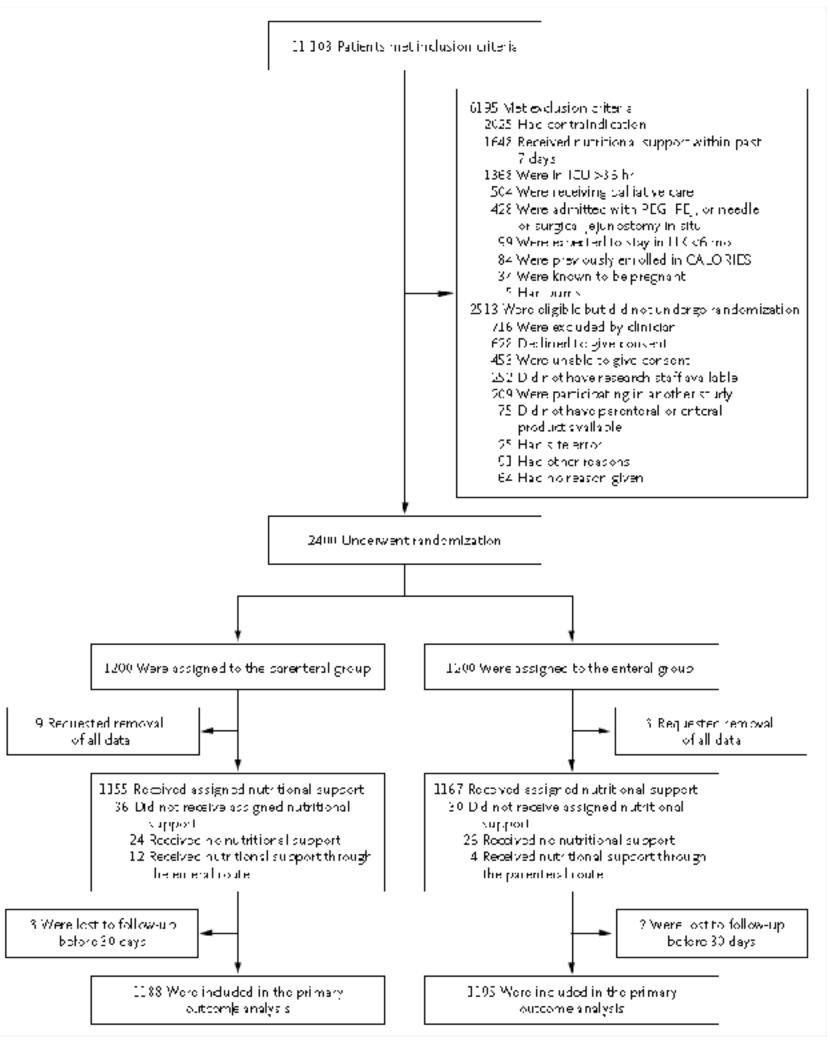
In adult ICU patients, when full EN support is not possible or fails to reach caloric targets, early administration of SPN compared with late administration (at the end of the first week after ICU admission) does not confer major benefits with respect to morbidity and mortality.

Considering that infectious morbidity and resolution of organ failure may be negatively affected through mechanisms not yet clearly understood, and acquisition costs of PN are higher compared with EN, the early administration of PN cannot be recommended.

Output Annals of Intensive Care a SpringerOpen Journal

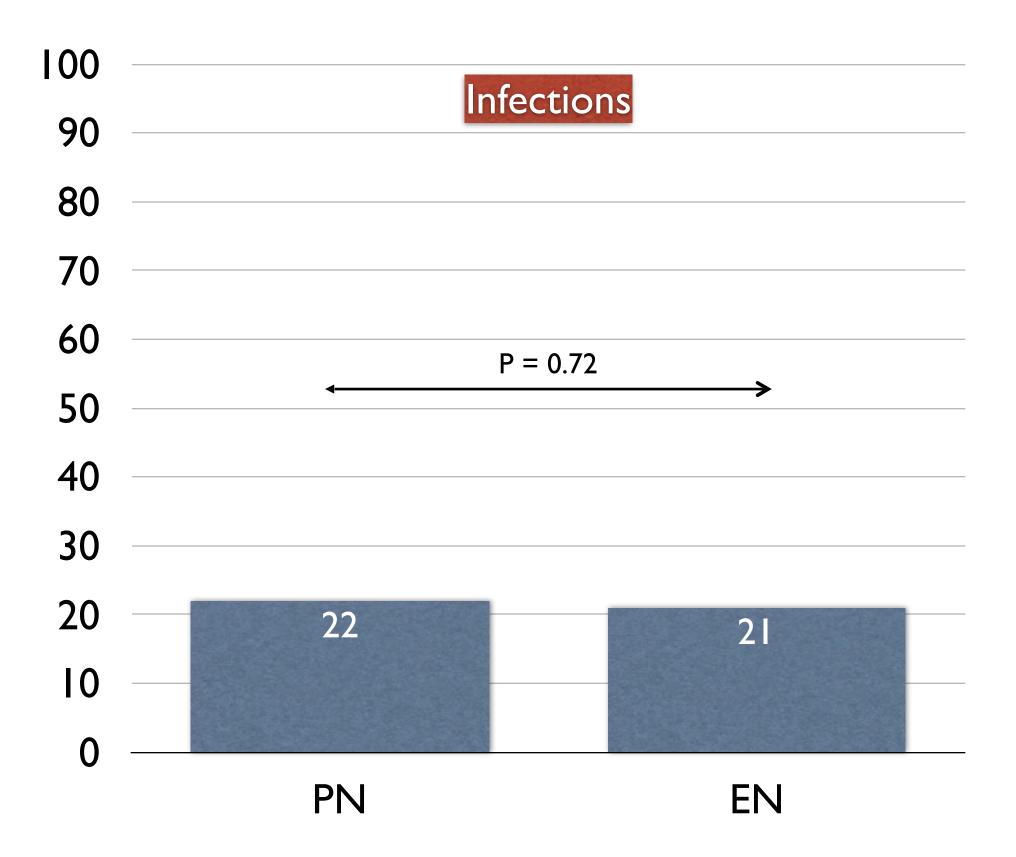
Open Access

Timing of (supplemental) parenteral nutrition in critically ill patients: a systematic review

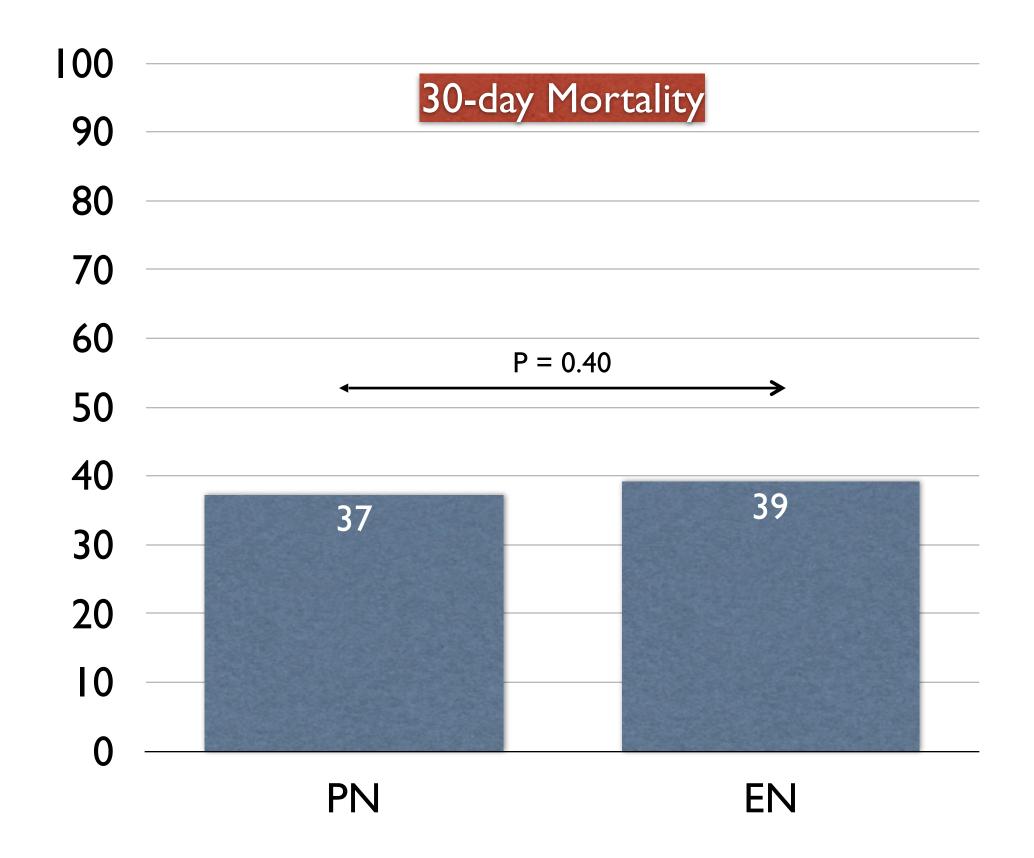


Calories trials: to compare EN versus PN, not SPN

1200 PN

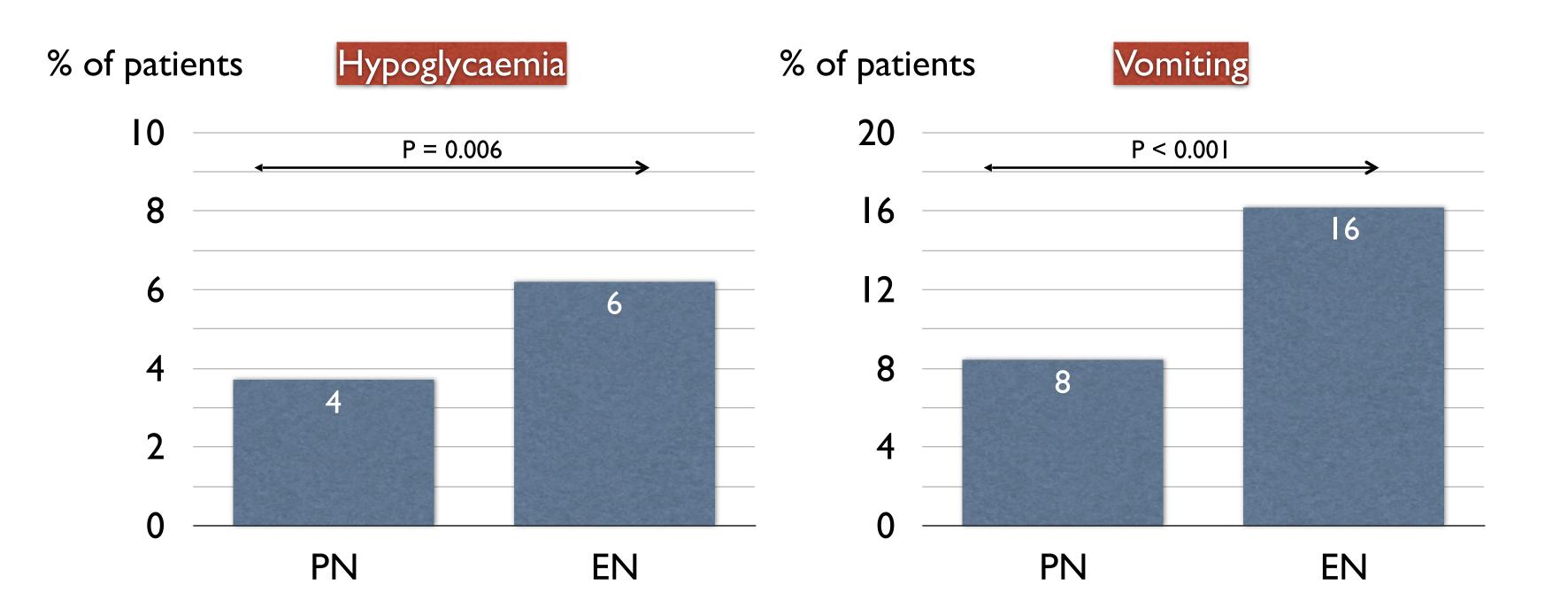

1200 EN

Harvey SE et al. NEJM 2014

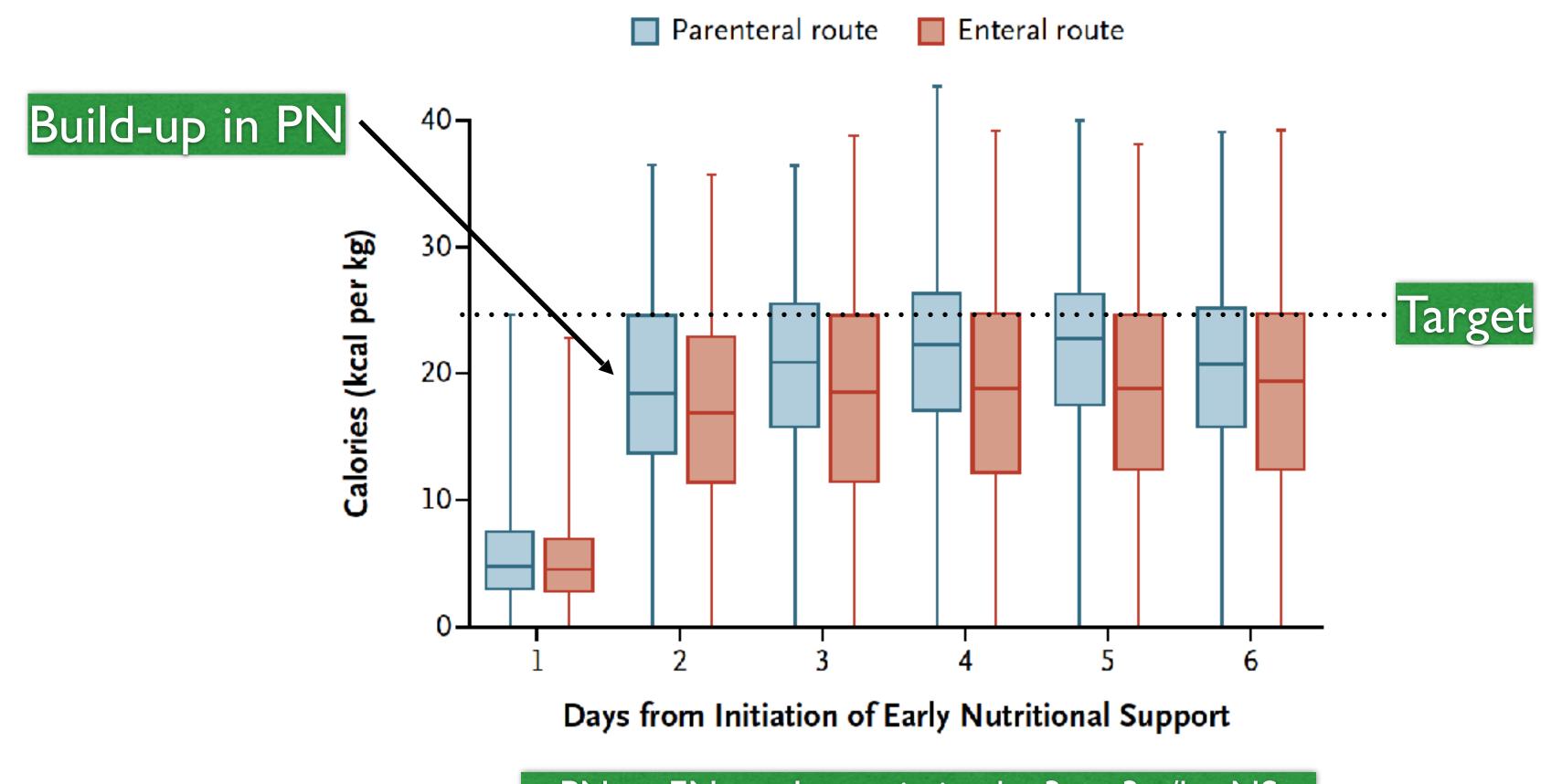


Calories trial: mortality and infections

No differences in mean number of treated infectious complications (0.22 vs. 0.21; P = 0.72), 90-day mortality (442/1184 pts [37.3%] vs. 464/1188 pts [39.1%], P = 0.40), and 14 other secondary outcomes, or in rates of adverse events.



Calories trial: EEN vs EPN


No differences in 14 other secondary outcomes, or in rates of adverse events

Harvey SE et al. NEJM 2014

Unexpected build-up in PN

This content may not be amended, modified or commercially exploited without prior written consent

PN vs. EN total protein intake 3 vs. 3 g/kg, NS PN vs. EN total energy intake 89 vs. 74 kcal/kg, NS

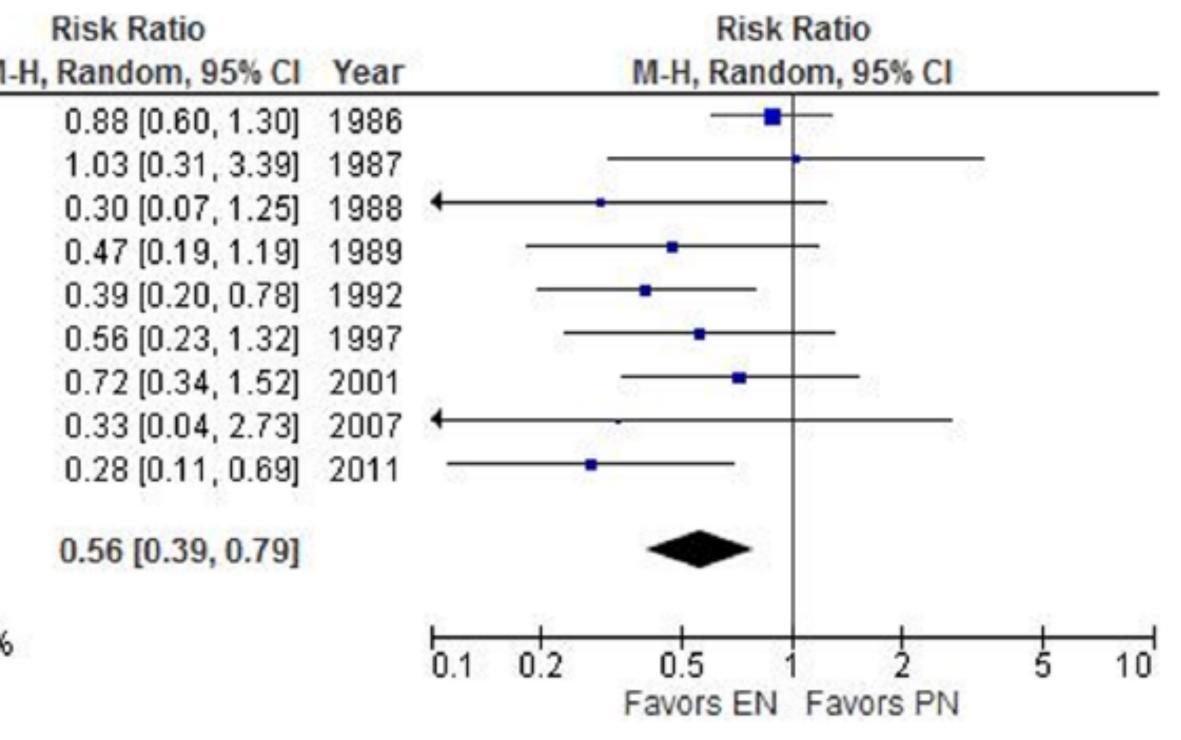
Comments Calories trial

- pragmatic design •
- short intervention \bullet
- no difference in intake EN vs. PN (both not reaching target) •
- relatively high 30-day mortality (33.1 vs 34.2%) •
- no difference in outcome (less hypoglycemia and vomiting in PN) •

Consequences Calories trial

- Will you start PN in patients with functioning gut? ullet
- Increased infection rates not observed in PN patients \bullet
- **Due to build-up** •
- **EN** is first-line therapy in the ICU •
- ulletstart PN

However, in case we do not reach our targets we should not be afraid to



Enteral Nutrition versus Parenteral Nutrition

infectious complications

	EN		PN			
Study or Subgroup	Events	Total	Events	Total	Weight	M-
Adams 1986	15	23	17	23	25.0%	8
Young 1987	5	28	4	23	6.9%	
Peterson 1988	2	21	8	25	5.1%	
Moore 1989	5	29	11	30	10.2%	
Kudsk 1992	9	54	19	45	15.0%	
Kalfarentzos 1997	5	18	10	20	11.2%	
Woodcock 2001	6	16	11	21	13.5%	
Casas 2007	1	11	3	11	2.6%	
Chen 2011	5	49	18	49	10.5%	
Total (95% CI)		249		247	100.0%	
Total events	53		101			
Heterogeneity: Tau ² = Test for overall effect:	1967 - 197 No. 197 No.			(P = 0.	15); I ^z = 3	4%

Recent meta-analysis EN vs PN

Elke et al. Critical Care (2016) 20:117 DOI 10.1186/s13054-016-1298-1

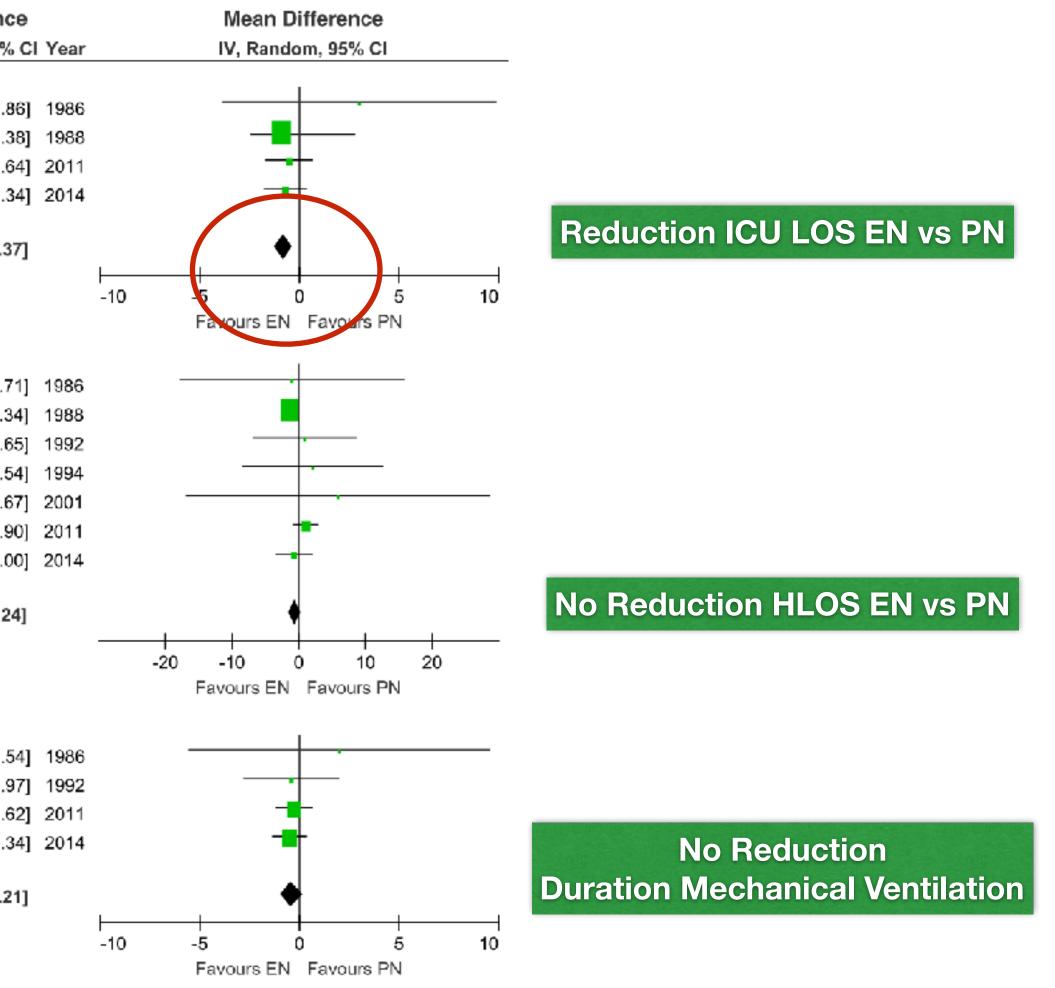
RESEARCH

Enteral versus parenteral nutrition in critically ill patients: an updated systematic review and meta-analysis of randomized controlled trials

Gunnar Elke¹, Arthur R. H. van Zanten², Margot Lemieux³, Michele McCall⁴, Khursheed N. Jeejeebhoy⁵, Matthias Kott¹, Xuran Jiang³, Andrew G. Day³ and Daren K. Heyland^{3*}

Critical Care

Open Access


Elke G, Van Zanten AR et al. Crit Care 2016;20:117

EN versus PN: LOS, duration ventilation

		EN			PN			Mean Differenc
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95%
ICU LOS								
Adams	13	11	19	10	10	17	0.4%	3.00 [-3.86, 9.8
Peterson	3.7	0.8	21	4.6	1	25	68.6%	-0.90 [-1.42, -0.3
Chen	9.09	2.75	49	9.6	3.06	49	14.0%	-0.51 [-1.66, 0.6
Harvey	11.3	12.5	1197	12	13.5	1190	17.0%	-0.70 [-1.74, 0.3
Total (95% CI)	26.8		1286			1281	100.0%	-0.80 [-1.23, -0.3]
Heterogeneity: Tau ² =		ni² = 1.	60, df =	3 (P =	0.66);	l² = 0%	,	
Test for overall effect:	Z = 3.62	(P=0	.0003)					
Hospital LOS								
Adams	30	21	19	31	29	17	0.3%	-1.00 [-17.71, 15.7
Peterson	13.2	1.6	21	14.6	1.9	21	62.8%	-1.40 [-2.46, -0.3
Kudsk	20.5	19.9	51	19.6	18.8	45	1.4%	0.90 [-6.85, 8.6
Borzotta	39	23.1	28	36.9	14	21	0.8%	2.10 [-8.34, 12.5
Woodcock	33.2	43	16	27.3	18.7	18	0.2%	5.90 [-16.87, 28.6
Chen	23.32	5.6	49	22.24	3.27	49	23.6%	1.08 [-0.74, 2.9
Harvey	26.8	33.2	1186	27.5	33.9	1185	11.0%	-0.70 [-3.40, 2.0
Total (95% CI)			1370			1356	100.0%	-0.67 [-1.57, 0.24
Heterogeneity: Tau ² =	0.05; Cł	ni² = 6.	12, df =	: 6 (P =	0.41);	l² = 2%	,	
Test for overall effect:	Z = 1.44	(P = ().15)					
Mechanical ventil	ation							
Adams	12	11	17	10	10	13	0.6%	2.00 [-5.54, 9.5
Kudsk	2.8							-0.40 [-2.77, 1.9
Chen		2.11			2.42			-
Harvey	8.2		1197			1189		-0.50 [-1.34, 0.3
Total (95% CI)			1314			1296	100.0%	-0.38 [-0.98, 0.2
Heterogeneity: Tau ² =	0.00; Ch	$h^2 = 0.$	51, df =	: 3 (P =	0.92);	l ² = 0%	•	
Test for overall effect:	Z = 1.27	(P=0).21)					

Elke G, Van Zanten AR et al. Crit Care 2016;20:117

Enteral versus parenteral nutrition in critically ill patients: and updated systematic review and meta-analysis of randomized controlled trials

		EN		PN			Risk Ratio		Risk Ratio
_	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	Year	M-H, Random, 95% Cl
Α	Caloric intake P	N > EN							
	Young	5	28	4	23	5.0%	1.03 [0.31, 3.39]	1987	
	Peterson	2	21	8	25	3.7%	0.30 [0.07, 1.25]	1988	<
	Moore	5	29	11	30	7.4%	0.47 [0.19, 1.19]	1989	
	Kudsk	9	51	18	45	10.8%	0.44 [0.22, 0.88]	1992	
	Woodcock	6	16	11	21	9.8%	0.72 [0.34, 1.52]	2001	
	Subtotal (95% CI)		145		144	36.8%	0.55 [0.37, 0.82]		
	Total events	27		52					
	Heterogeneity: Tau ² = (0.00; Chi²	= 2.75	df = 4 (F	> = 0.60); I ² = 0%			
	Test for overall effect: 2	Z = 2.95 (I	P = 0.0	03)					
		-		-					
в	Caloric intake Pl	N ~ EN							
	Adams	15	23	17	23	18.2%	0.88 [0.60, 1.30]	1986	
	Kalfarentzos	5	18	10	20	8.2%	0.56 [0.23, 1.32]	1997	
	Casas	1	11	3	11	1.9%	0.33 [0.04, 2.73]	2007	·
	Justo Meirelles	2	12	4	10	3.5%	0.42 [0.10, 1.82]	2011	· · · ·
	Harvey	194	1197	194	1191	23.8%	0.99 [0.83, 1.19]	2014	
	Subtotal (95% CI)		1261		1255	55.5%	0.94 [0.80, 1.10]		+ PN
	Total events	217		228					
	Heterogeneity: Tau ² = 0	0.00; Chi²	= 4.02	df = 4 (F	P = 0.40); I² = 0%			
	Test for overall effect: 2	Z = 0.77 (I	P = 0.4	4)					
С	Caloric intake n	ot repo	rted						
	Chen	5	49	18	49	7.6%	0.28 [0.11, 0.69]	2011	
	Subtotal (95% CI)		49		49	7.6%	0.28 [0.11, 0.69]		
	Total events	5		18					
	Heterogeneity: Not app	licable							
	Test for overall effect: 2	Z = 2.76 (I	P = 0.0	06)					
	Treatment effect,	all stud	dies						
	Total (95% Cl)		1455		1448	100.0%	0.64 [0.48, 0.87]		
	Total events	249		298					
	Heterogeneity: Tau ² = 0	0.09; Chi²	= 18.7	1, df = 10	(P = 0.	.04); l² = 47	7%		0.1 0.2 0.5 1 2 5 10
	Test for overall effect: 2	Z = 2.91 (I	P = 0.0	04)					Favours EN Favours PN
	Test for subgroup differ	rences: C	hi² = 11	.87, df =	2 (P = (0.003), l² =	83.1%		

PN caloric intake > EN caloric intake

PN caloric intake = EN caloric intake

Only more infections in PN trials when caloric dose in PN group is higher

Overall EN less infections than PN

Elke G, Van Zanten AR... Heyland DK. Crit Care 2016;20:117

Try to avoid SPN in low-risk patients

 Combining early PN and EN only for severe malnourished patients (BMI<18.5) or

enteral targets

probably the best strategy

This content may not be amended, modified or commercially exploited without prior written consent

Apply only after 8 days of ICU admission in patients failing to achieve

•Enhancing early EN and optimizing enteral energy and protein targets is

Van Zanten AR. Crit Care Med 2011

Late Parenteral Nutrition

- \bullet and if early EN is not feasible.
- [Quality of Evidence: Very Low] \bullet

G1. We suggest that, in the patient at low nutrition risk (eg, NRS 2002 \leq 3 or NUTRIC score \leq 5), exclusive PN be withheld over the first 7 days following ICU admission if the patient cannot maintain volitional intake

Studies until 31 december 2013

A.S.P.E.N./SCCM guidelines 2016

 \bullet

 \bullet

Late Parenteral Nutrition

- nutrition risk (eg, NRS 2002 \geq 5 or NUTRIC score \geq 5) or severely as soon as possible following ICU admission.
- may be detrimental to the patient.

G2. Based on expert consensus, in the patient determined to be at high malnourished, when EN is not feasible, we suggest initiating exclusive PN

G3. We recommend that, in patients at either low or high nutrition risk, use of supplemental PN be considered after 7–10 days if unable to meet >60% of energy and protein requirements by the enteral route alone. Initiating Figure 9. Enteral nutrition (EN) with glutamine vs EN with no glutamine, outcome mortality. ICU, intensive care unit. supplemental PN prior to this 7- to 10-day period in critically ill patients on some EN does not improve outcomes and

Studies until 31 december 2013

Late Parenteral Nutrition

- ullet
- [Quality of Evidence: Low] \bullet

Vallei

H2. We suggest that hypocaloric PN dosing ($\leq 20 \text{ kcal/kg/d}$ or 80% of estimated energy needs) with adequate protein (≥ 1.2 g protein/kg/d) be considered in appropriate patients (high risk or severely malnourished) requiring PN, initially over the first week of hospitalization in the ICU.

Studies until 31 december 2013

SPN in high-risk ICU patients

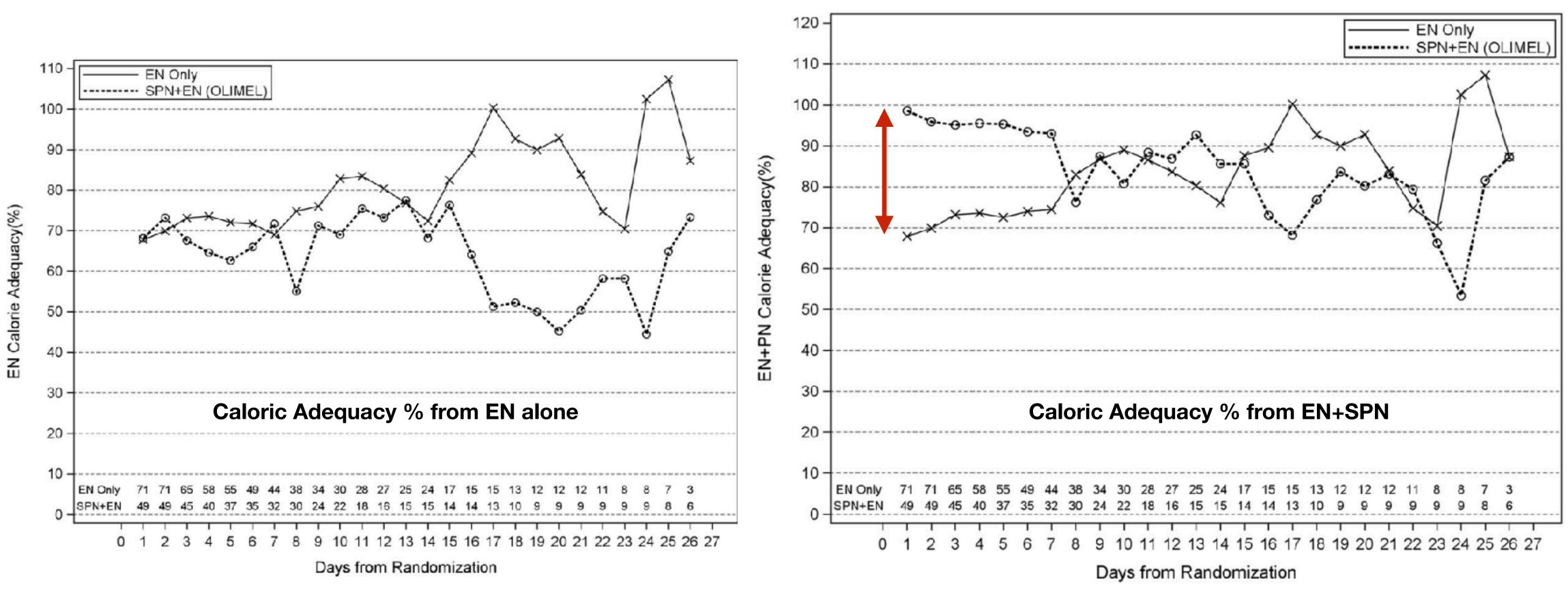
Wischmeyer et al. Critical Care (2017) 21:142 DOI 10.1186/s13054-017-1736-8

RESEARCH

A randomized trial of supplemental parenteral nutrition in underweight and overweight critically ill patients: the TOP-UP pilot trial

Paul E. Wischmeyer^{1*}, Michel Hasselmann², Christine Kummerlen², Rosemary Kozar³, Demetrios James Kutsogiannis⁴, Constantine J. Karvellas⁵, Beth Besecker⁶, David K. Evans⁷, Jean-Charles Preiser⁸, Leah Gramlich⁹, Khursheed Jeejeebhoy¹⁰, Rupinder Dhaliwal¹¹, Xuran Jiang¹¹, Andrew G. Day¹¹ and Daren K. Heyland^{11,12,13}

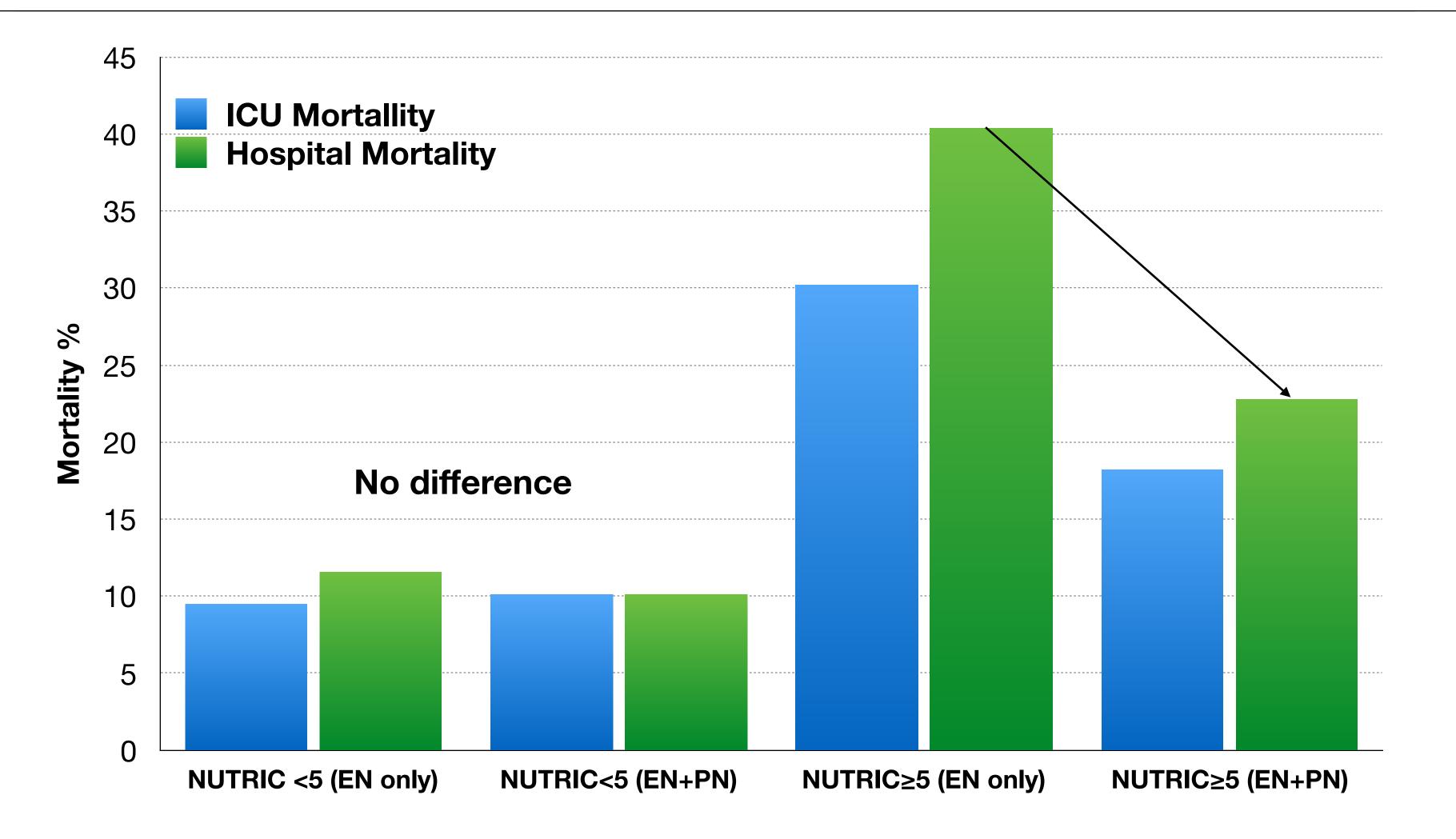
Critical Care



TOP-UP pilot trial: 71 versus 49 patients

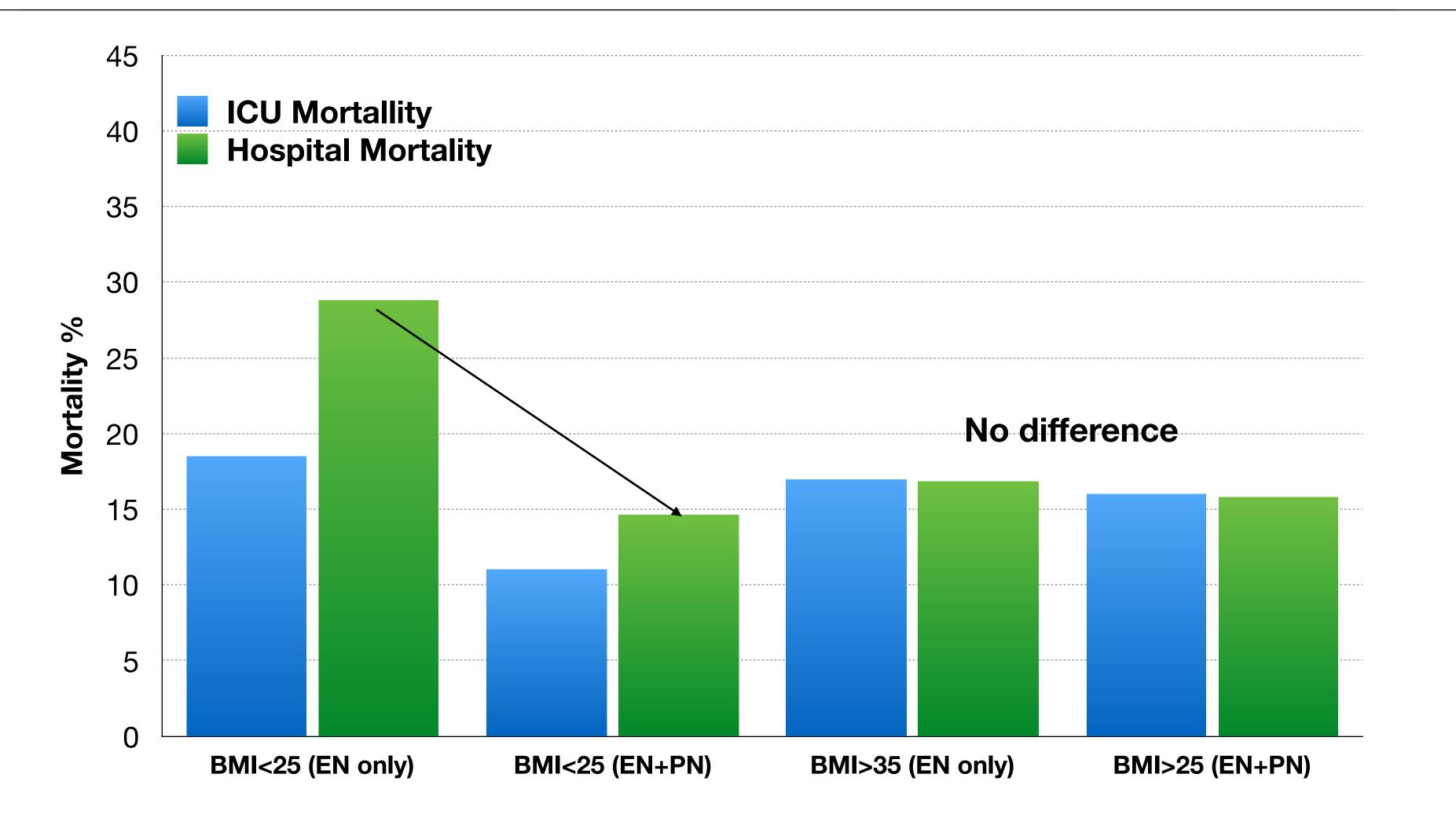
Difference in calories and proteins during first week

Wischmeyer et al. Critical Care (2017) 21:142


More proteins and calories (20-25%) due to SPN

Calorie prescription	1844 ± 420	1728 ± 444	-116 (-275 to 42)	0.149
Protein prescription	106 ± 30	100 ± 31	-6 (-17 to 6)	0.319
% of prescribed kcal/protein rec	eived			
EN only				
Calories first 27 days	70 ± 26	67 ± 25	-3 (-12 to 7)	0.551
Calories first 7 days	68 ± 28	68 ± 27	-1 (-11 to 9)	0.905
Protein first 27 days	66 ± 26	60 ± 23	-5 (-14 to 3)	0.231
Protein in first 7 days	63 ± 26	61 ± 25	-3 (-12 to 7)	0.566
PN + EN				
Calories first 27 days	72 ± 25	90 ± 16	18 (11 to 25)	< 0.001
Calories first 7 days	69 ± 28	95 ± 13	26 (18 to 34)	< 0.001
Protein first 27 days	68 ± 25	82 ± 19	13 (6 to 21)	<0.001
Protein in first 7 days	64 ± 26	86±16	22 (14 to 29)	<0.001

Effect of SPN in low and high risk ICU patients according to NUTRIC scores



Wischmeyer et al. Critical Care (2017) 21:142

Effect of SPN in low and high risk ICU patients according to NUTRIC scores

Wischmeyer et al. Critical Care (2017) 21:142

Big scientific debate on this study

2014 Harry M. Vars Award

Intensive Nutrition in Acute Lung Injury: A Clinical Trial (INTACT)

Carol A. Braunschweig, PhD, RD¹; Patricia M. Sheean, PhD, RD²; Sarah J. Peterson, MS, RD³; Sandra Gomez Perez, MS, RD⁴; Sally Freels, PhD⁵; Omar Lateef, DO⁶; David Gurka, MD, PhD⁶; and Giamila Fantuzzi, PhD¹

Journal of Parenteral and Enteral Nutrition Volume 39 Number 1 January 2015 13-20 © 2014 American Society for Parenteral and Enteral Nutrition DOI: 10.1177/0148607114528541 jpen.sagepub.com hosted at online.sagepub.com

INTACT trial, stopped early (n = 78)

Intensive medical nutrition therapy (IMNT; 30 kcal/kg/day) from acute lung injury diagnosis to hospital discharge

Braunschweig CA, et al. JPEN J Parenter Enteral Nutr. 2015;39:13–20.

Post-hoc analysis INTACT trial

- 1.27).
- 0.83, 1.0).
- 1.1).
- increased subsequent mortality.

Higher overall energy intake, higher mortality (OR: 1.14, 95% CI: 1.02,

Patients enrolled for at least 8 days (n = 66), higher early energy intake significantly increased the HR for mortality (HR: 1.17, 95% CI: 1.07, 1.28), higher late energy intake was significantly protective (HR: 0.91, 95% CI:

Results were similar for early but not late protein (g/kg) exposure (earlyexposure HR: 8.9, 95% CI: 2.3, 34.3; late-exposure HR: 0.15, 95% CI: 0.02,

Threshold analyses indicated early mean intakes >18 kcal/kg significantly

Braunschweig CA, et al. Am J Clin Nutr 2017;105:411-6.

Intensive Care Med (2017) 43:1637–1647 DOI 10.1007/s00134-017-4880-3

SEVEN-DAY PROFILE PUBLICATION

Early goal-directed nutrition versus standard of care in adult intensive care patients: the single-centre, randomised, outcome assessor-blinded EAT-ICU trial

Matilde Jo Allingstrup¹, Jens Kondrup², Jørgen Wiis¹, Casper Claudius¹, Ulf Gøttrup Pedersen¹, Rikke Hein-Rasmussen¹, Mads Rye Bjerregaard¹, Morten Steensen¹, Tom Hartvig Jensen¹, Theis Lange^{3,4}, Martin Bruun Madsen¹, Morten Hylander Møller¹ and Anders Perner^{1*}

Methods EAT-ICU study

- than 3 days in the ICU.
- Early goal-directed nutrition (EGDN) group
 - indirect calorimetry ٠
 - ٠ parenteral nutrition.
- Standard of care group •
 - 25 kcal/kg/day by enteral nutrition. •
 - If not met by day 7, supplemented with parenteral nutrition.
- months.

Acutely admitted, mechanically ventilated ICU patients expected to stay longer

24-h urinary urea aiming at covering 100% of requirements from the first full trial day using enteral and

Primary outcome: physical component summary (PCS) score of SF-36 at 6

Allingstrup MJ et al. Intensive Care Med (2017) 43:1637–1647

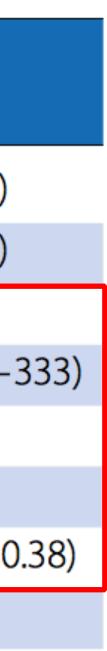
Baseline characteristics

Variable	Early goal-directed nutrition (N = 100)	Standard of care (<i>N</i> = 99)
Age, years	63 (51–72)	68 (52–75)
Male sex, no. (%)	65 (65%)	59 (60%)
Actual body weight, kg	78 (67–90)	80 (70–90)
BMI ^a , kg/m ²	22 (20–26)	22 (20–25)
Source of ICU admission, no. (%)		
Emergency department	31 (31%)	30 (30%)
General ward	45 (45%)	38 (38%)
Operating or recovery room	6 (6%)	12 (12%)
Other ICU ^b	10 (10%)	11 (11%)
Other hospital	8 (8%)	8 (8%)
Admission type, no. (%)		
Medical	52 (52%)	43 (43%)
Emergency surgery	43 (43%)	53 (54%)
Elective surgery	5 (5%)	3 (3%)
Diagnoses and procedures, no. (%)		
Haematologic malignancy ^c	13 (13%)	12 (12%)
Multiple trauma	8 (8%)	10 (10%)
Severe sepsis	47 (47%)	47 (47%)
Dialysis on admission	6 (6%)	5 (5%)
Mechanical ventilation	100 (100%)	99 (100%)
Days in hospital before ICU admission, days	0.9 (0.2–4.1)	1.1 (0.2–4.8)
Time from ICU admission to randomisation, h	14 (10–20)	13 (7–20)
Nutrition given in ICU prior to randomisation		
Energy, <mark>kcal/day</mark>	140 (24–260)	122 (30–275)
Protein, g/day	0 (0-0)	0 (0–0)
SAPS II ^d	47 (37–54)	48 (39–59)
SOFA score ^e	8 (6–11)	8 (5–10)

This content may not be amended, modified or commercially exploited without prior written consent

•5 years age difference •low BMI •11% other ICU •otherwise well balanced

Allingstrup MJ et al. Intensive Care Med (2017) 43:1637–1647



Nutrition characteristics in ICU after randomisation

Variable	Early goal-directed nutrition $(N = 100)$	Standard of care (N = 99)
Measured ^a energy requirement, kcal/day	2069 (1816–2380)	1887 (1674–2244)
Calculated ^b energy requirement, kcal/day	1950 (1750–2125)	1875 (1650–2100)
Energy intake, kcal/day	1877 (1567–2254)	1061 (745–1470)
Energy balance ^c , kcal/day	-66 (-157 to -6)	−787 (−1223 to −3
Measured ^d protein requirement, g/kg/day	1.63 (1.36–2.05)	1. <mark>16 (</mark> 0.89–1.62)
Protein intake, g/kg/day	1.47 (1.13–1.69)	0.50 (0.29–0.69)
Protein balance ^c , g/kg/day	-0.28 (-0.76 to 0.11)	-0.69 (-1.02 to -0.
Plasma urea, mmol/l	13.5 (8.7–21.9)	9.0 (5.6–14.4)
24-h urinary urea, mmol/day	516 (368–760)	320 (175–482)

Primary and secondary outcomes

Primary outcome measure		Early goal-directed nut $(N = 100)$	rition	Standard of (N = 99)	fcare	Adjusted mean difference (95% CI)	<i>p</i> value
PCS score at 6 months adjusted for presence of l tologic malignancy, mean (SD)	naema-	22.9 (21.8)		23.0 (22.3)		—0.0 ^a (—5.9 to 5.8)	0.99
Secondary outcome measures	Early (N =	goal-directed nutrition 100)	Stand (N =	dard of care 99)	Relat (95%	ive risk or mean difference CI)	<i>p</i> value
Vital status, no. (%)							
Dead at day 28	20 (20	0%)	21 (21	1%)	0.94 (0.55–1.63)	0.83
Dead at day 90	30 (30	0%)	32 (32	2%)	0.93 (0.61–1.40)	0.72
Dead at 6 months	37 (3)	7%)	34 (34	1%)	1.08 (0.74–1.57)	0.70
Length of stay among 6-month survivors, media	n days (IC)R)					
ICU	7 (5–2	22)	7 (4–1	11)	NA		0.21
Hospital	30 (1)	2–53)	34 (14	1–53)	NA		1.00
Percentage of days alive without life support at o	day 90, me	edian (IQR)					
RRT	100%	(97–100)	100%	(97–100)	NA		0.64
Mechanical ventilation	86% ((39–96)	92% (56–96)	NA		0.27
Inotrope/vasopressor support	96% ((82–98)	96% (84–98)	NA		0.67
Time to new organ failure, mean days (SD)	5.4 (0	.4)	5.9 (0	.5)	NA		0.33 ^b
New organ failure in ICU, no. (%)	81 (8	1%)	77 (78	3 %)	1.04 (0.90–1.20)	0.57
Time to death, mean days (SD)	60 (13	3)	91 (24	4)	NA		0.51 ^c
New use of RRT in ICU, no. (%)	22 (2)	2%)	17 (17	7%)	1.28 (0.73–2.26)	0.39
Time to any infection, mean days (SD)	20 (1)		51 (9)		NA		0.80 ^b
Nosocomial infections, no. (%)							
Any	19 (19	9%)	12 (12	2%)	1.57 (0.80–3.05)	0.18 ^d

This content may not be amended, modified or commercially exploited without prior written consent

Allingstrup MJ et al. Intensive Care Med (2017) 43:1637–1647

EGDN induces more hyperglycemia and insulin use

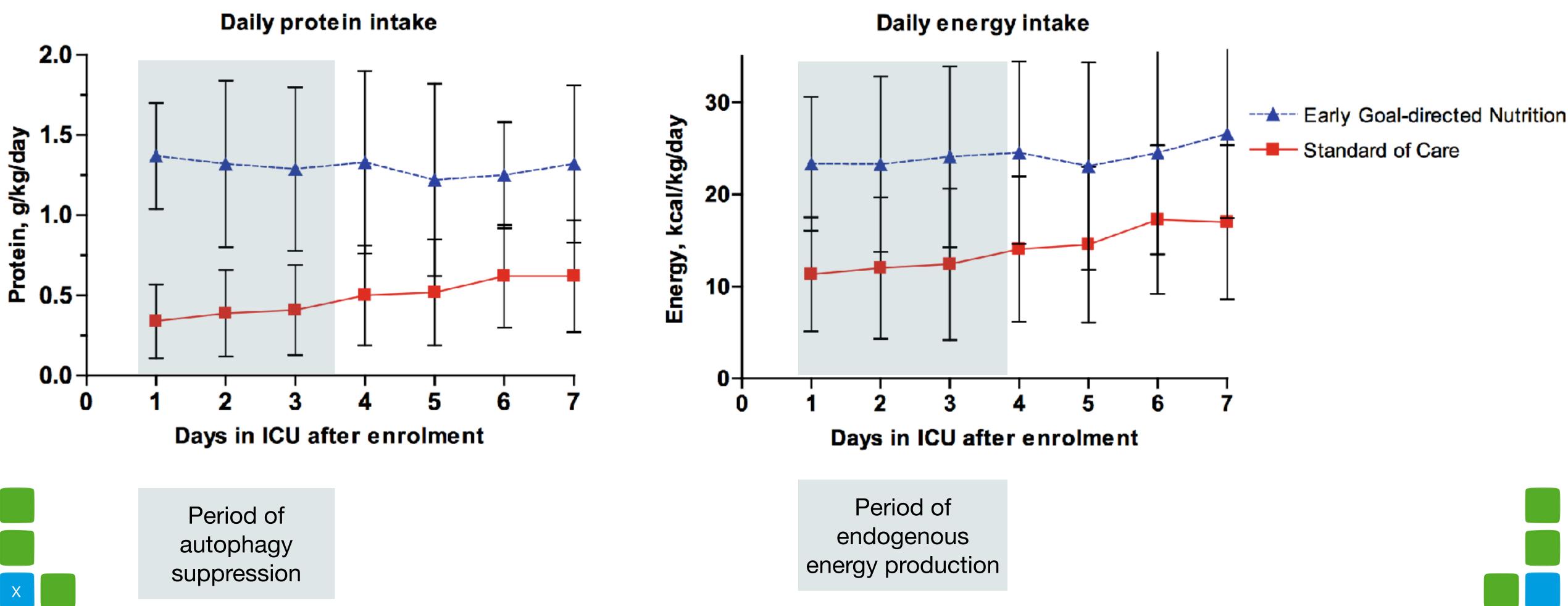
Secondary outcome measures	Early goal-directed nutrition $(N = 100)$	Standard of care $(N = 99)$	Relative risk or mean difference (95% CI)	<i>p</i> value
Cumulative insulin dose in ICU, median IU (IQR) ^g	86 (2–530)	0 (0–39)	262 (71–453)	0.008
No. of patients (%) with at least one episode of				
Blood glucose \leq 2.2 mmol/l	2 (2%)	1 (1%)	NA	_e
Blood glucose \geq 15 mmol/l	52 (52%)	25 (25%)	2.06 (1.40–3.03)	0.0001

- kg/day.
- urea nitrogen matches the apparent increase in protein balance
- protein.
- increased in RRT was observed.

Protein balance improved from -0.69 to -0.28 in the EGDN group, i.e. by 0.41 g/

Plasma urea also increased, (assuming Vd of 60% of weight), increase in plasma

This indicates that no net protein gain was obtained with the extra supply of


Reduction of protein load at a plasma urea above 20 mmol/l may explain why no

Allingstrup MJ et al. Intensive Care Med (2017) 43:1637–1647

Additional protein and energy by SPN

ESPEN ICU guidelines 2018

- be implemented within three to seven days.
- **Grade of recommendation: B consensus (89 % agreement)**
- **Recommendation 7: Early and progressive PN can be provided instead of no** • nutrition in case of contraindications for EN in severely malnourished patients.
- Grade of Recommendation: 0 strong consensus (95 % agreement)
- **Recommendation 8: To avoid overfeeding, early full EN and PN shall not be** • used in critically ill patients but shall be prescribed within three to seven days.
- Grade of recommendation: A strong consensus (100 % agreement)

• Recommendation 6: In case of contraindications to oral and EN, PN should

ESPEN ICU guidelines 2018

- ulletcase basis.
- % agreement)
- **Recommendation 21: PN should not be started until all** • agreement)

Recommendation 20: In patients who do not tolerate full dose EN during the first week in the ICU, the safety and benefits of initiating PN should be weighed on a case-by-

• Grade of recommendation: GPP – strong consensus (96.30

strategies to maximize EN tolerance have been attempted. Grade of recommendation: GPP – strong consensus (95 %)

Timing nutrition during critical illness is essential

